Stereotactic Ablative Radiotherapy in Synchronous and Metachronous Oligo-Metastatic Non Small Cell Lung Cancer

NCT ID: NCT06207292

Last Updated: 2024-01-16

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

RECRUITING

Clinical Phase

NA

Total Enrollment

100 participants

Study Classification

INTERVENTIONAL

Study Start Date

2016-12-31

Study Completion Date

2024-12-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

This is a prospective, non-randomized, single arm, single institution phase II trial to evaluate the safety and effectiveness of stereotactic ablative radiotherapy (SABR) in oncogene addicted and non-oncogene addicted synchronous and/or metachronous oligo-metastatic (oligoM) non-small cell lung cancer (NSCLC) patients.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Targeted Therapies and Immunotherapy have fundamentally changed the treatment of metastatic non-small cell lung cancer (NSCLC).

There is an increasing interest in the use of stereotactic ablative radiotherapy (SABR) for oligo-metastatic (oligo-M) NSCLC patients. It is postulated that definitive treatment of the primary as well as regional node/s and oligo-M in these patients may improve their overall survival (OS). Oligo-M is considered an intermediate state between local and poly-metastatic disease and is commonly defined as 1-5 metastatic lesions, in keeping with the recent European Society of Radiotherapy and Oncology (ESTRO) and American Society for Radiation Oncology (ASTRO) consensus.

If discovered within 4-6months of diagnosis, they are termed synchronous oligo-M. Alternatively, should oligo-M develop following definitive treatment of the primary tumour, this is termed metachronous oligo-M.

Multiple clinical trials have demonstrated prolonged survival following SABR treatment to all sites of oligo-M, particularly in NSCLC.

Targeted therapies (TT) and Immunotherapy (IT) have transformed the landscape of NSCLC treatment by improving OS in metastatic setting. However, most SABR trials for oligo-M patients were conducted in the pre-TT and pre-IT era. How SABR and TT or IT should be integrated in the treatment of oligo-M NSCLC therefore remains an active area of investigation.

Oligo-M is considered a clinically distinct from poly-metastatic disease, presenting a unique therapeutic window during which the treatment of all oligo-M may result in long-term disease control and possibly cure in select cases.

SABR offers the advantages of being non-invasive, safe, and well-tolerated, even by frail patients. It ablates multiple targets simultaneously achieving good rates of local control. The objectives of treating oligo-M using SABR include:

1. ablating all sites of visible disease to reduce tumor burden
2. preventing progression to a poly-metastatic disease state
3. relieving morbidity associated with metastases without a decline in quality of life (QoL)
4. delaying the start of systemic therapy

Reasons to support SABR in oligo-M NSCLC:

1. Systemic treatment alone does not eradicate the presence of all oligo-M disease. SABR may improve local control at the sites of oligo-M decreasing the risk of poly-metastatic widespread by reducing the burden of proliferative malignant cells
2. SABR is a histology-agnostic ablative technique which can eradicate systemic therapy-resistant disease. So, SABR optimizes local control at the sites of oligo-M, thereby delaying the need to start a new systemic therapy or eliminating the morbidity and potential mortality associated with local and eventually distant progression of disease.

* Targeted therapies (TT) or Immunotherapy (IT) (chemotherapy) will be combined with early SABR of all cancer sites in patients with synchronous oligo-M NSCLC: primary tumour (T), regional node/s (N) and oligo-metastases (M). Eradication of all macroscopic cancer sites at the time of primary diagnosis by combined modality treatment is expected to decrease the risk of resistance development with only microscopic disease potentially remaining. This will result in improvement of progression free survival (PFS), QoL, delayed change of therapy and OS without added high-grade (\>G3) toxicity. Synchronous oligo-M NSCLC patients will be enrolled to SABR and TT or IT.
* Targeted therapies or Immunotherapy (chemotherapy) will be combined with SABR of all cancer residual sites in patients with oligo-persistence, oligo-progressive or oligo- induced oligo-M NSCLC: primary tumour (T), regional node/s (N) and oligo-M. Eradication of all macroscopic cancer sites at the time of oligo-persistence or oligo- progression by combined modality treatment is expected to delay the initiation of a new systemic therapy. This will result in improvement of PFS and QoL, delayed change of therapy and OS without added high-grade (\>G3) toxicity. Metachronous oligo-M NSCLC patients will be enrolled to SABR including maintenance TT or IT.
* Patients unfit for systemic therapy with synchronous or metachronous oligo-M NSCLC will be enrolled to receive SABR alone in all sites of disease. Eradication of all macroscopic cancer sites is expected to delay the widespread and/or symptomatic disease. This will result in improvement of OS and QoL without added high-grade (\>G3) toxicity.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

NSCLC NSCLC Stage IV Oligometastatic Disease Non Small Cell Lung Cancer Non Small Cell Lung Cancer Metastatic EGF-R Positive Non-Small Cell Lung Cancer NSCLC Stage IV Without EGFR/ALK Mutation Non-Small Cell Adenocarcinoma Non-Small Cell Squamous Lung Cancer Non-Small Cell Lung Cancer With Mutation in Epidermal Growth Factor Receptor Synchronous Metastases Metachronous Metastasis

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

NA

Intervention Model

SINGLE_GROUP

Primary Study Purpose

TREATMENT

Blinding Strategy

NONE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

SABR in oligo-M NSCLC

Synchronous and Metachronous oligo-M NSCLC patients will be enrolled to stereotactic ablative radiotherapy (SABR) of primary tumour (T) and/or regional node(s) (N) and oligo-metastatic site (M) with the aim of maintaining ongoing therapy or delaying delaying the start of systemic therapy

Group Type EXPERIMENTAL

Stereotactic Ablative Radiotherapy

Intervention Type RADIATION

The prescribed dose of stereotactic ablative radiotherapy (SABR) will be chosen based on the target to be treated and its proximity to organs at risk(s):

Lung-peripheral 33-45 Gy/ 3 fractions

Lung-central/ultra-central 35-60 Gy/5 fractions

Mediastinal/supraclavicular node 35-45 Gy/5 fractions

Liver 45-54 Gy/3 fractions; 50-65 Gy/5 fractions

Bone non-spine 30-36 Gy/3 fractions; 35-50 Gy/5 fractions

Bone spine 30-33 Gy/3 fractions (SIB); 35-40 Gy/ 5 fractions (SIB)

Abdominal-pelvic node 33-39 Gy/ 3 fractions; 35-50 Gy/5 fractions

Adrenal gland 30-42 Gy/3 fractions; 35-50 Gy/5 fractions

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Stereotactic Ablative Radiotherapy

The prescribed dose of stereotactic ablative radiotherapy (SABR) will be chosen based on the target to be treated and its proximity to organs at risk(s):

Lung-peripheral 33-45 Gy/ 3 fractions

Lung-central/ultra-central 35-60 Gy/5 fractions

Mediastinal/supraclavicular node 35-45 Gy/5 fractions

Liver 45-54 Gy/3 fractions; 50-65 Gy/5 fractions

Bone non-spine 30-36 Gy/3 fractions; 35-50 Gy/5 fractions

Bone spine 30-33 Gy/3 fractions (SIB); 35-40 Gy/ 5 fractions (SIB)

Abdominal-pelvic node 33-39 Gy/ 3 fractions; 35-50 Gy/5 fractions

Adrenal gland 30-42 Gy/3 fractions; 35-50 Gy/5 fractions

Intervention Type RADIATION

Other Intervention Names

Discover alternative or legacy names that may be used to describe the listed interventions across different sources.

Targeted Therapy; Immunotherapy; Chemotherapy

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Eastern Cooperative Oncology Group (ECOG) Performance Status of 0-2
* histologically confirmed NSCLC
* synchronous oligo-M NSCLC as determined by Positron emission tomography- computed tomography (PET/CT) and brain MRI (AJCC 8th edition)
* metachronous oligo-M NSCLC (oligo-persistence, oligo-progressive, oligo-induced) as determined by PET/CT and brain magnetic resonance imaging (MRI) (AJCC 8th edition)
* patients with at least one target to be treated by SABR at the body
* patients with brain metastases synchronous to the body will be enrolled only if amenable to radiosurgery (the number of brain metastases does not enter into the count of the number of oligo-M)
* patients with a previous history of brain metastases will be enrolled only if the previously treated brain metastases are in control

Exclusion Criteria

* Ability to understand and the willingness to sign an institutional review board (IRB)- approved informed consent document (either directly or via a legally authorized representative)
* Inability to safely treat target lesions
* Pregnant women are excluded from this study because radiation therapy has known potential for teratogenic or abortifacient effects.
Minimum Eligible Age

18 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Paola Anselmo,MD

UNKNOWN

Sponsor Role collaborator

Michelina Casale,PhD

UNKNOWN

Sponsor Role collaborator

Fabio Trippa,MD

UNKNOWN

Sponsor Role collaborator

Radiotherapy Oncology Centre "Santa Maria" Hospital

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Fabio Arcidiacono, MD

Principal Investigator

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Fabio Arcidiacono, MD

Role: PRINCIPAL_INVESTIGATOR

Radiotherapy Oncology Centre "S.Maria" Hospital, Terni

Paola Anselmo, MD

Role: PRINCIPAL_INVESTIGATOR

Radiotherapy Oncology Centre "S.Maria" Hospital, Terni

Michelina Casale, PhD

Role: PRINCIPAL_INVESTIGATOR

Radiotherapy Oncology Centre "S.Maria" Hospital, Terni

Fabio Trippa, MD

Role: STUDY_DIRECTOR

Radiotherapy Oncology Centre "S.Maria" Hospital, Terni

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Radiotherapy Oncology Centre "S.Maria" Hospital

Terni, TR, Italy

Site Status RECRUITING

Countries

Review the countries where the study has at least one active or historical site.

Italy

Central Contacts

Reach out to these primary contacts for questions about participation or study logistics.

Fabio Arcidiacono, MD

Role: CONTACT

+390744205729

Paola Anselmo, MD

Role: CONTACT

+390744205729

Facility Contacts

Find local site contact details for specific facilities participating in the trial.

Fabio Arcidiacono, MD

Role: primary

+390744205729

Paola Anselmo, MD

Role: backup

+390744205729

References

Explore related publications, articles, or registry entries linked to this study.

Guckenberger M, Lievens Y, Bouma AB, Collette L, Dekker A, deSouza NM, Dingemans AC, Fournier B, Hurkmans C, Lecouvet FE, Meattini I, Mendez Romero A, Ricardi U, Russell NS, Schanne DH, Scorsetti M, Tombal B, Verellen D, Verfaillie C, Ost P. Characterisation and classification of oligometastatic disease: a European Society for Radiotherapy and Oncology and European Organisation for Research and Treatment of Cancer consensus recommendation. Lancet Oncol. 2020 Jan;21(1):e18-e28. doi: 10.1016/S1470-2045(19)30718-1.

Reference Type RESULT
PMID: 31908301 (View on PubMed)

Lievens Y, Guckenberger M, Gomez D, Hoyer M, Iyengar P, Kindts I, Mendez Romero A, Nevens D, Palma D, Park C, Ricardi U, Scorsetti M, Yu J, Woodward WA. Defining oligometastatic disease from a radiation oncology perspective: An ESTRO-ASTRO consensus document. Radiother Oncol. 2020 Jul;148:157-166. doi: 10.1016/j.radonc.2020.04.003. Epub 2020 Apr 22.

Reference Type RESULT
PMID: 32388150 (View on PubMed)

Palma DA, Olson R, Harrow S, Gaede S, Louie AV, Haasbeek C, Mulroy L, Lock M, Rodrigues GB, Yaremko BP, Schellenberg D, Ahmad B, Griffioen G, Senthi S, Swaminath A, Kopek N, Liu M, Moore K, Currie S, Bauman GS, Warner A, Senan S. Stereotactic ablative radiotherapy versus standard of care palliative treatment in patients with oligometastatic cancers (SABR-COMET): a randomised, phase 2, open-label trial. Lancet. 2019 May 18;393(10185):2051-2058. doi: 10.1016/S0140-6736(18)32487-5. Epub 2019 Apr 11.

Reference Type RESULT
PMID: 30982687 (View on PubMed)

Palma DA, Olson R, Harrow S, Gaede S, Louie AV, Haasbeek C, Mulroy L, Lock M, Rodrigues GB, Yaremko BP, Schellenberg D, Ahmad B, Senthi S, Swaminath A, Kopek N, Liu M, Moore K, Currie S, Schlijper R, Bauman GS, Laba J, Qu XM, Warner A, Senan S. Stereotactic Ablative Radiotherapy for the Comprehensive Treatment of Oligometastatic Cancers: Long-Term Results of the SABR-COMET Phase II Randomized Trial. J Clin Oncol. 2020 Sep 1;38(25):2830-2838. doi: 10.1200/JCO.20.00818. Epub 2020 Jun 2.

Reference Type RESULT
PMID: 32484754 (View on PubMed)

Correa RJ, Salama JK, Milano MT, Palma DA. Stereotactic Body Radiotherapy for Oligometastasis: Opportunities for Biology to Guide Clinical Management. Cancer J. 2016 Jul-Aug;22(4):247-56. doi: 10.1097/PPO.0000000000000202.

Reference Type RESULT
PMID: 27441744 (View on PubMed)

Iyengar P, Wardak Z, Gerber DE, Tumati V, Ahn C, Hughes RS, Dowell JE, Cheedella N, Nedzi L, Westover KD, Pulipparacharuvil S, Choy H, Timmerman RD. Consolidative Radiotherapy for Limited Metastatic Non-Small-Cell Lung Cancer: A Phase 2 Randomized Clinical Trial. JAMA Oncol. 2018 Jan 11;4(1):e173501. doi: 10.1001/jamaoncol.2017.3501. Epub 2018 Jan 11.

Reference Type RESULT
PMID: 28973074 (View on PubMed)

Gomez DR, Tang C, Zhang J, Blumenschein GR Jr, Hernandez M, Lee JJ, Ye R, Palma DA, Louie AV, Camidge DR, Doebele RC, Skoulidis F, Gaspar LE, Welsh JW, Gibbons DL, Karam JA, Kavanagh BD, Tsao AS, Sepesi B, Swisher SG, Heymach JV. Local Consolidative Therapy Vs. Maintenance Therapy or Observation for Patients With Oligometastatic Non-Small-Cell Lung Cancer: Long-Term Results of a Multi-Institutional, Phase II, Randomized Study. J Clin Oncol. 2019 Jun 20;37(18):1558-1565. doi: 10.1200/JCO.19.00201. Epub 2019 May 8.

Reference Type RESULT
PMID: 31067138 (View on PubMed)

Wang XS, Bai YF, Verma V, Yu RL, Tian W, Ao R, Deng Y, Zhu XQ, Liu H, Pan HX, Yang L, Bai HS, Luo X, Guo Y, Zhou MX, Sun YM, Zhang ZC, Li SM, Cheng X, Tan BX, Han LF, Liu YY, Zhang K, Zeng FX, Jia L, Hao XB, Wang YY, Feng G, Xie K, Lu Y, Zeng M. Randomized Trial of First-Line Tyrosine Kinase Inhibitor With or Without Radiotherapy for Synchronous Oligometastatic EGFR-Mutated Non-Small Cell Lung Cancer. J Natl Cancer Inst. 2023 Jun 8;115(6):742-748. doi: 10.1093/jnci/djac015.

Reference Type RESULT
PMID: 35094066 (View on PubMed)

Peng P, Gong J, Zhang Y, Zhou S, Li Y, Han G, Meng R, Chen Y, Yang M, Shen Q, Chu Q, Xia S, Zhang P, Zhang L, Chen Y, Zhang L. EGFR-TKIs plus stereotactic body radiation therapy (SBRT) for stage IV Non-small cell lung cancer (NSCLC): A prospective, multicenter, randomized, controlled phase II study. Radiother Oncol. 2023 Jul;184:109681. doi: 10.1016/j.radonc.2023.109681. Epub 2023 Apr 25.

Reference Type RESULT
PMID: 37105304 (View on PubMed)

Arcidiacono F, Anselmo P, Casale M, Zannori C, Ragusa M, Mancioli F, Marchetti G, Loreti F, Italiani M, Bracarda S, Maranzano E, Trippa F. STereotactic Ablative RadioTherapy in NEWly Diagnosed and Recurrent Locally Advanced Non-Small Cell Lung Cancer Patients Unfit for ConcurrEnt RAdio-Chemotherapy: Early Analysis of the START-NEW-ERA Non-Randomised Phase II Trial. Int J Radiat Oncol Biol Phys. 2023 Mar 15;115(4):886-896. doi: 10.1016/j.ijrobp.2022.10.025. Epub 2022 Oct 24.

Reference Type RESULT
PMID: 36288758 (View on PubMed)

Bahig H, Tonneau M, Blais N, Wong P, Filion E, Campeau MP, Vu T, Al-Saleh A, Tehfe M, Florescu M, Roberge D, Masucci L, Richard C, Menard C, Routy B. Stereotactic Ablative Radiotherapy for oligo-progressive disease refractory to systemic therapy in Non-Small Cell Lung Cancer: A registry-based phase II randomized trial (SUPPRESS-NSCLC). Clin Transl Radiat Oncol. 2022 Jan 5;33:115-119. doi: 10.1016/j.ctro.2021.12.008. eCollection 2022 Mar.

Reference Type RESULT
PMID: 35243022 (View on PubMed)

Jongbloed M, Bartolomeo V, Steens M, Dursun S, van de Lisdonk T, De Ruysscher DKM, Hendriks LEL. Treatment outcome of patients with synchronous oligometastatic non-small cell lung cancer in the immunotherapy era: Analysis of a real-life intention-to-treat population. Eur J Cancer. 2023 Sep;190:112947. doi: 10.1016/j.ejca.2023.112947. Epub 2023 Jun 20.

Reference Type RESULT
PMID: 37451182 (View on PubMed)

Remon J, Menis J, Levy A, De Ruysscher DKM, Hendriks LEL. How to optimize the incorporation of immunotherapy in trials for oligometastatic non-small cell lung cancer: a narrative review. Transl Lung Cancer Res. 2021 Jul;10(7):3486-3502. doi: 10.21037/tlcr-20-1065.

Reference Type RESULT
PMID: 34430382 (View on PubMed)

Zayed S, Louie AV, Breadner DA, Palma DA, Correa RJM. Radiation and immune checkpoint inhibitors in the treatment of oligometastatic non-small-cell lung cancer: a practical review of rationale, recent data, and research questions. Ther Adv Med Oncol. 2023 Jul 8;15:17588359231183668. doi: 10.1177/17588359231183668. eCollection 2023.

Reference Type RESULT
PMID: 37435562 (View on PubMed)

Baydoun A, Lee VL, Biswas T. Oligometastatic Non-Small Cell Lung Cancer: A Practical Review of Prospective Trials. Cancers (Basel). 2022 Oct 29;14(21):5339. doi: 10.3390/cancers14215339.

Reference Type RESULT
PMID: 36358757 (View on PubMed)

Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J Nucl Med. 2009 May;50 Suppl 1(Suppl 1):122S-50S. doi: 10.2967/jnumed.108.057307.

Reference Type RESULT
PMID: 19403881 (View on PubMed)

Arcidiacono F, Aristei C, Marchionni A, Italiani M, Fulcheri CPL, Saldi S, Casale M, Ingrosso G, Anselmo P, Maranzano E. Stereotactic body radiotherapy for adrenal oligometastasis in lung cancer patients. Br J Radiol. 2020 Nov 1;93(1115):20200645. doi: 10.1259/bjr.20200645. Epub 2020 Sep 2.

Reference Type RESULT
PMID: 32822540 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

SABR-oligoM NSCLC 810

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.