Comparison of Upper and Lower Limb Maximal Exercise Capacities and Muscle Oxygenation in Patients With ILD
NCT ID: NCT06141603
Last Updated: 2023-12-28
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
30 participants
OBSERVATIONAL
2023-11-25
2024-12-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
In healthy people, respiratory frequency, tidal volume (VT), minute ventilation and oxygen consumption increase during exercise. In interstitial lung patients, vital capacity decreases at rest, which leads to limitation of VT. Lung compliance decreases and respiratory workload increases. The respiratory workload, which increases even more during exercise, has a bad effect on ventricular function. This causes a lower oxygen pulse and pulse volume in patients during exercise than in healthy individuals.
The primary aim of the study: To compare the maximal exercise capacities and muscle oxygenation during cardiopulmonary exercise tests of upper and lower extremities in patients with interstitial lung disease.
The secondary aim of the study is to compare energy consumption and the perception of dyspnea and fatigue during tests in patients with interstitial lung disease.
The primary outcome will be upper and lower maximal exercise capacities (cardiopulmonary exercise tests) and muscle oxygenation during cardiopulmonary exercise tests (Near-infrared spectroscopy) device).
Secondary outcome will be energy consumption (multi sensor activity device), the perception of dyspnea (Modified Borg Scale (MBS)) and fatigue (MBS).
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Keywords
Explore important study keywords that can help with search, categorization, and topic discovery.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
CASE_CROSSOVER
PROSPECTIVE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Lower Extremity Group
The first test is the cardiopulmonary exercise test (CPET), which evaluates the maximal exercise capacity of the lower extremities and will be performed on a treadmill.
During the test, the muscle oxygen of the individuals will be measured with a near-infrared spectrometer, and their energy consumption will be measured with a multisensory physical activity monitor.
No interventions assigned to this group
Upper Extremity Group
In the second test, the maximal exercise capacity for the upper limb will again be evaluated by CPET and performed on the arm ergometer.
The second test will be conducted 48 hours after the lower extremity exercise test.
During the test in the second group, as in the first test, muscle oxygen will be measured with a near-infrared spectrometer, and energy expenditure with a multisensory physical activity monitor.
No interventions assigned to this group
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
* have an orthopedic or neurological disease that will affect their exercise capacity
* acute exacerbation or any infection
* have contraindications to the exercise test
* an acute respiratory infection
* had Coronavirus-19 (COVID-19) disease in the last 3 months
* have undergone different treatments other than standard medical treatment
18 Years
75 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Gazi University
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Meral Boşnak Güçlü
Study director, PT, PhD, Prof.Dr. Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Head of Cardiopulmonary Rehabilitation Clinic
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Beyza Nur ÖYMEZ, Pt.
Role: PRINCIPAL_INVESTIGATOR
Gazi University
Nilgün YILMAZ DEMİRCİ, Prof. Dr.
Role: PRINCIPAL_INVESTIGATOR
Gazi University
Meral BOŞNAK GÜÇLÜ, Prof. Dr.
Role: STUDY_DIRECTOR
Gazi University
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Gazi University, Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Cardiopulmonary Rehabilitation Unit
Ankara, Çankaya, Turkey (Türkiye)
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
Meral BOŞNAK GÜÇLÜ, Prof. Dr.
Role: primary
Beyza Nur ÖYMEZ, Prof. Dr.
Role: backup
References
Explore related publications, articles, or registry entries linked to this study.
Guler SA, Corte TJ. Interstitial Lung Disease in 2020: A History of Progress. Clin Chest Med. 2021 Jun;42(2):229-239. doi: 10.1016/j.ccm.2021.03.001.
Mikolasch TA, Garthwaite HS, Porter JC. Update in diagnosis and management of interstitial lung disease . Clin Med (Lond). 2017 Apr;17(2):146-153. doi: 10.7861/clinmedicine.17-2-146.
Molgat-Seon Y, Schaeffer MR, Ryerson CJ, Guenette JA. Exercise Pathophysiology in Interstitial Lung Disease. Clin Chest Med. 2019 Jun;40(2):405-420. doi: 10.1016/j.ccm.2019.02.011.
Bourke SJ. Interstitial lung disease: progress and problems. Postgrad Med J. 2006 Aug;82(970):494-9. doi: 10.1136/pgmj.2006.046417.
Shen Q, Guo T, Song M, Guo W, Zhang Y, Duan W, Peng Y, Ni S, Ouyang X, Peng H. Pain is a common problem in patients with ILD. Respir Res. 2020 Nov 11;21(1):297. doi: 10.1186/s12931-020-01564-0.
Tomlinson OW, Markham L, Wollerton RL, Knight BA, Duckworth A, Gibbons MA, Scotton CJ, Williams CA. Validity and repeatability of cardiopulmonary exercise testing in interstitial lung disease. BMC Pulm Med. 2022 Dec 22;22(1):485. doi: 10.1186/s12890-022-02289-0.
Dowman LM, McDonald CF, Hill CJ, Lee AL, Barker K, Boote C, Glaspole I, Goh NSL, Southcott AM, Burge AT, Gillies R, Martin A, Holland AE. The evidence of benefits of exercise training in interstitial lung disease: a randomised controlled trial. Thorax. 2017 Jul;72(7):610-619. doi: 10.1136/thoraxjnl-2016-208638. Epub 2017 Feb 17.
Antoniou KM, Margaritopoulos GA, Tomassetti S, Bonella F, Costabel U, Poletti V. Interstitial lung disease. Eur Respir Rev. 2014 Mar 1;23(131):40-54. doi: 10.1183/09059180.00009113.
Baydur A. Pulmonary physiology in interstitial lung disease: recent developments in diagnostic and prognostic implications. Curr Opin Pulm Med. 1996 Sep;2(5):370-5. doi: 10.1097/00063198-199609000-00005.
Panagiotou M, Church AC, Johnson MK, Peacock AJ. Pulmonary vascular and cardiac impairment in interstitial lung disease. Eur Respir Rev. 2017 Jan 17;26(143):160053. doi: 10.1183/16000617.0053-2016. Print 2017 Jan.
Nishiyama O, Yamazaki R, Sano H, Iwanaga T, Higashimoto Y, Kume H, Tohda Y. Physical activity in daily life in patients with idiopathic pulmonary fibrosis. Respir Investig. 2018 Jan;56(1):57-63. doi: 10.1016/j.resinv.2017.09.004. Epub 2017 Oct 23.
Mendes P, Wickerson L, Helm D, Janaudis-Ferreira T, Brooks D, Singer LG, Mathur S. Skeletal muscle atrophy in advanced interstitial lung disease. Respirology. 2015 Aug;20(6):953-9. doi: 10.1111/resp.12571. Epub 2015 Jun 17.
Harris-Eze AO, Sridhar G, Clemens RE, Zintel TA, Gallagher CG, Marciniuk DD. Role of hypoxemia and pulmonary mechanics in exercise limitation in interstitial lung disease. Am J Respir Crit Care Med. 1996 Oct;154(4 Pt 1):994-1001. doi: 10.1164/ajrccm.154.4.8887597.
Bhambhani Y, Maikala R, Buckley S. Muscle oxygenation during incremental arm and leg exercise in men and women. Eur J Appl Physiol Occup Physiol. 1998 Oct;78(5):422-31. doi: 10.1007/s004210050441.
Molgat-Seon Y, Schaeffer MR, Ryerson CJ, Guenette JA. Cardiopulmonary Exercise Testing in Patients With Interstitial Lung Disease. Front Physiol. 2020 Jul 10;11:832. doi: 10.3389/fphys.2020.00832. eCollection 2020.
Orr JL, Williamson P, Anderson W, Ross R, McCafferty S, Fettes P. Cardiopulmonary exercise testing: arm crank vs cycle ergometry. Anaesthesia. 2013 May;68(5):497-501. doi: 10.1111/anae.12195.
Franssen FM, Wouters EF, Baarends EM, Akkermans MA, Schols AM. Arm mechanical efficiency and arm exercise capacity are relatively preserved in chronic obstructive pulmonary disease. Med Sci Sports Exerc. 2002 Oct;34(10):1570-6. doi: 10.1097/00005768-200210000-00007.
Lollgen H, Leyk D. Exercise Testing in Sports Medicine. Dtsch Arztebl Int. 2018 Jun 15;115(24):409-416. doi: 10.3238/arztebl.2018.0409.
Miller MR, Crapo R, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Enright P, van der Grinten CP, Gustafsson P, Jensen R, Johnson DC, MacIntyre N, McKay R, Navajas D, Pedersen OF, Pellegrino R, Viegi G, Wanger J; ATS/ERS Task Force. General considerations for lung function testing. Eur Respir J. 2005 Jul;26(1):153-61. doi: 10.1183/09031936.05.00034505. No abstract available.
Johnson JD, Theurer WM. A stepwise approach to the interpretation of pulmonary function tests. Am Fam Physician. 2014 Mar 1;89(5):359-66.
Quanjer PH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault JC. Lung volumes and forced ventilatory flows. Eur Respir J. 1993 Mar;6 Suppl 16:5-40. doi: 10.1183/09041950.005s1693. No abstract available.
Subudhi AW, Dimmen AC, Roach RC. Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise. J Appl Physiol (1985). 2007 Jul;103(1):177-83. doi: 10.1152/japplphysiol.01460.2006. Epub 2007 Apr 12.
Lusina SJ, Warburton DE, Hatfield NG, Sheel AW. Muscle deoxygenation of upper-limb muscles during progressive arm-cranking exercise. Appl Physiol Nutr Metab. 2008 Apr;33(2):231-8. doi: 10.1139/h07-156.
Lee JA, Laurson KR. Validity of the SenseWear armband step count measure during controlled and free-living conditions. J Exerc Sci Fit. 2015 Jun;13(1):16-23. doi: 10.1016/j.jesf.2014.11.002. Epub 2015 Jan 29.
Patel SA, Benzo RP, Slivka WA, Sciurba FC. Activity monitoring and energy expenditure in COPD patients: a validation study. COPD. 2007 Jun;4(2):107-12. doi: 10.1080/15412550701246658.
Ross RM. ATS/ACCP statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003 May 15;167(10):1451; author reply 1451. doi: 10.1164/ajrccm.167.10.950. No abstract available.
Pane C, Salzano A, Trinchillo A, Del Prete C, Casali C, Marcotulli C, Defazio G, Guardasole V, Vastarella R, Giallauria F, Puorro G, Marsili A, De Michele G, Filla A, Cittadini A, Sacca F. Safety and feasibility of upper limb cardiopulmonary exercise test in Friedreich ataxia. Eur J Prev Cardiol. 2022 Mar 25;29(3):445-451. doi: 10.1093/eurjpc/zwaa134.
Andrews AW, Thomas MW, Bohannon RW. Normative values for isometric muscle force measurements obtained with hand-held dynamometers. Phys Ther. 1996 Mar;76(3):248-59. doi: 10.1093/ptj/76.3.248.
Bohannon RW. Reference values for extremity muscle strength obtained by hand-held dynamometry from adults aged 20 to 79 years. Arch Phys Med Rehabil. 1997 Jan;78(1):26-32. doi: 10.1016/s0003-9993(97)90005-8.
Wilson RC, Jones PW. A comparison of the visual analogue scale and modified Borg scale for the measurement of dyspnoea during exercise. Clin Sci (Lond). 1989 Mar;76(3):277-82. doi: 10.1042/cs0760277.
Mahler DA, Rosiello RA, Harver A, Lentine T, McGovern JF, Daubenspeck JA. Comparison of clinical dyspnea ratings and psychophysical measurements of respiratory sensation in obstructive airway disease. Am Rev Respir Dis. 1987 Jun;135(6):1229-33. doi: 10.1164/arrd.1987.135.6.1229.
Krupp LB, LaRocca NG, Muir-Nash J, Steinberg AD. The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol. 1989 Oct;46(10):1121-3. doi: 10.1001/archneur.1989.00520460115022.
Gencay-Can A, Can SS. Validation of the Turkish version of the fatigue severity scale in patients with fibromyalgia. Rheumatol Int. 2012 Jan;32(1):27-31. doi: 10.1007/s00296-010-1558-3. Epub 2010 Jul 24.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
Gazi University 28
Identifier Type: -
Identifier Source: org_study_id