The Study on Effect and Neural Network Mechanism of Transcranial Direct Current Stimulation for Sudden Deafness With Tinnitus

NCT ID: NCT05964725

Last Updated: 2023-11-27

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

RECRUITING

Clinical Phase

NA

Total Enrollment

86 participants

Study Classification

INTERVENTIONAL

Study Start Date

2023-11-23

Study Completion Date

2024-08-30

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

This clinical study is prospective, single-center, randomized, controlled, double-blind clinical trail, which entitled transcranial electrical stimulation for the treatment of acute tinnitus approved by Sun Yat-sen University, and intends to recruit 86 patients with sudden deafness and tinnitus. For acute subjective tinnitus, a common otological disease, the study gave the experimental group patients received tDCS with electrodes positioned over the left temporal cortex for 5 days. To assess the efficacy of conventional medical therapy and tDCS by comparing changes in anterior and posterior tinnitus-related subjective scale scores, such as THI, VAS, BAI, BDI, PSQI, and hearing recovery, in patients who received tDCS, to determine whether tDCS is effective in improving acute tinnitus, and whether it is superior to conventional tinnitus treatment. In addition, the study will continue to follow patients for 1 month,3 months, and 6 months after the end of treatment to observe the long-term sustained efficacy of tDCS. This clinical trail will also evaluate tDCS from the perspective of compliance and safety, and explore the factors affecting the efficacy of this therapy.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Sample size estimation:

On-site recruitment will be conducted in the otolaryngology clinic for eligible patients with sudden deafness and tinnitus, with dedicated personnel to recruit subjects, with a total of at least 86 expected recruitment. In order to retain subjects, staff will tell them about the benefits of inclusion in clinical studies for sudden deafness with tinnitus, and actively add subjects' contact information to provide relevant consulting services for subjects during clinical studies. During follow-up, participants will be provided with a free tinnitus-related assessment test to motivate.

Plan for missing data: Screening failure, i.e. subjects did not meet the inclusion and exclusion criteria, or subjects withdrew informed consent, among other things for reasons why it was not included in this clinical study. Study subjects who failed to screen will be pressed according to their own condition Provide appropriate treatment according to clinical guidelines. This subset of subjects will not be included in clinical studies.

Statistical analysis plan:

When considering the influence of baseline, the continuous variables were analyzed by covariance analysis, and the qualitative indicators were tested by CMH test or logistic regression.

Primary analysis: Using covariance analysis to compare the different changes of THI scores between two groups after 5 days treatment, controlled for age and baseline THI.

Secondary analysis: Using covariance analysis to compare the different changes of VAS, BAI, BDI, PSQI scores between two groups after 5 days treatment, controlled for age and baseline values corresponding to each scale.

Using a repeated measure ANOVA to compare the different changes of THI, VAS, BAI, BDI, PSQI between two groups at 1, 3 and 6 follow-up visits.

Using Chi square test or Fisher exact test to compare the different efficient rate between two groups after 5 days treatment.

Exploratory analysis:

Using multiple linear regression analysis to explore the factors affecting the short-term and long -term efficacy of the two treatments, such as age, hearing loss threshold, tinnitus loudness, tinnitus frequency and so on.

Using Independent two sample t-test or nonparametric analysis to compare the differences in EEG- or fMRI-related indicators between two groups.

Safety analysis:

Using Pearson's chi-square test to compare the difference of adverse event incidence rate between two groups.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Tinnitus, Subjective Sudden Deafness Transcranial Direct Current Stimulation Double-Blind Method Female Male Human Treatment Outcome

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Participants in the included studies were randomized 1:1 by statisticians. The statistician will number the subjects using a computer-generated random number table, then arrange them in order of number size, and then randomly divide the subjects into random blocks of length 2 or 4 to complete the randomization.
Primary Study Purpose

TREATMENT

Blinding Strategy

QUADRUPLE

Participants Caregivers Investigators Outcome Assessors
In the whole clinical research process, the subjects and researchers participating in the efficacy and safety evaluation should be in a blind state, that is, neither of them knows the specific intervention measures given to the subjects. For participant, the treatment equipment is exactly the same between the two groups. Also, 10 seconds sham stimulation at the beginning of treatment is set in the control group for minimizing risk of participants being able to guess treatment allocation. The randomized allocation is completed by a unified randomization center. Therefore, the investigators in each center just know "A" or "B" for the allocation information of each participant. For outcomes assessors, they are only responsible for baseline and follow-up assessment during the study.

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Receive traditional medical therapy and transcranial direct current stimulation

intravenous methylprednisolone infusion (dose of 1 mg/kg/day, maximum 60 mg/day) for 5 to 10 days. Patients included in this study were routinely examined and tested for audiometry, including otoscopy, pure tone audiometry, acoustic impedance, brainstem evoked potential, and tinnitus detection. After completion, the 32-guide EEG collector from Bricon was used to collect changes in neural activity in all subjects.

Group Type EXPERIMENTAL

Receive traditional medical therapy and transcranial direct current stimulation

Intervention Type DEVICE

Equipment used: Bricon tDCS stimulator, high-precision electrode stimulation method Stimulant dose: 1.5mA Stimulation time: 20 minutes/time, continuous treatment for 5 days Stimulation course: 5 days/course Stimulation target: left auditory cortex area, i.e., under system 10-20, left T3 position.

Receive traditional medical therapy and sham stimulation

Similarly, intravenous methylprednisolone infusion (dose of 1 mg/kg/day, maximum 60 mg/day) for 5 to 10 days. By controlling the tDCS stimulator to mimic only the first 30 seconds of tDCS stimulation, after 30 seconds of pathway resistance control, so that the stimulation intensity is below the threshold, without giving real stimulation, in this process, the position of the stimulation target is not changed, and the rest of the operation is the same.

Group Type SHAM_COMPARATOR

Receive traditional medical therapy and sham stimulation

Intervention Type DEVICE

By controlling the tDCS stimulator to mimic only the first 30 seconds of tDCS stimulation, after 30 seconds of pathway resistance control, so that the stimulation intensity is below the threshold, without giving real stimulation, in this process, the position of the stimulation target is not changed, and the rest of the operation is the same.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Receive traditional medical therapy and transcranial direct current stimulation

Equipment used: Bricon tDCS stimulator, high-precision electrode stimulation method Stimulant dose: 1.5mA Stimulation time: 20 minutes/time, continuous treatment for 5 days Stimulation course: 5 days/course Stimulation target: left auditory cortex area, i.e., under system 10-20, left T3 position.

Intervention Type DEVICE

Receive traditional medical therapy and sham stimulation

By controlling the tDCS stimulator to mimic only the first 30 seconds of tDCS stimulation, after 30 seconds of pathway resistance control, so that the stimulation intensity is below the threshold, without giving real stimulation, in this process, the position of the stimulation target is not changed, and the rest of the operation is the same.

Intervention Type DEVICE

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Patients with tinnitus as the main complaint: patients subjectively feel sound in the ear or deep part of the head without internal or external sound stimulation, with or without hearing loss, and seek medical treatment
* Patients with sudden deafness with tinnitus whose course is less than 1 month and have not received any drug treatment
* Age 18-60 years
* Tinnitus frequency is 125-8000 Hz

Exclusion Criteria

* Patients with conductive deafness, history of middle ear surgery, pulsatile tinnitus caused by vascular aberration and tinnitus cause by Meniere disease
* History of head trauma, central nervous system disease, mental disease, and drug abuse
Minimum Eligible Age

18 Years

Maximum Eligible Age

60 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Yuexin Cai, Doctor

Role: PRINCIPAL_INVESTIGATOR

Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Sun Yat-sen Memorial Hospital

Guangzhou, Guangdong, China

Site Status RECRUITING

Countries

Review the countries where the study has at least one active or historical site.

China

Central Contacts

Reach out to these primary contacts for questions about participation or study logistics.

Yuexin Cai, Doctor

Role: CONTACT

+8613825063663

Facility Contacts

Find local site contact details for specific facilities participating in the trial.

Yuexin Cai

Role: primary

+8613825063663

References

Explore related publications, articles, or registry entries linked to this study.

Chandrasekhar SS, Tsai Do BS, Schwartz SR, Bontempo LJ, Faucett EA, Finestone SA, Hollingsworth DB, Kelley DM, Kmucha ST, Moonis G, Poling GL, Roberts JK, Stachler RJ, Zeitler DM, Corrigan MD, Nnacheta LC, Satterfield L. Clinical Practice Guideline: Sudden Hearing Loss (Update). Otolaryngol Head Neck Surg. 2019 Aug;161(1_suppl):S1-S45. doi: 10.1177/0194599819859885.

Reference Type BACKGROUND
PMID: 31369359 (View on PubMed)

Rah YC, Park KT, Yi YJ, Seok J, Kang SI, Kim YH. Successful treatment of sudden sensorineural hearing loss assures improvement of accompanying tinnitus. Laryngoscope. 2015 Jun;125(6):1433-7. doi: 10.1002/lary.25074. Epub 2014 Dec 4.

Reference Type BACKGROUND
PMID: 25476777 (View on PubMed)

Klemm E, Bepperling F, Burschka MA, Mosges R; Study Group. Hemodilution therapy with hydroxyethyl starch solution (130/0.4) in unilateral idiopathic sudden sensorineural hearing loss: a dose-finding, double-blind, placebo-controlled, international multicenter trial with 210 patients. Otol Neurotol. 2007 Feb;28(2):157-70. doi: 10.1097/01.mao.0000231502.54157.ad.

Reference Type BACKGROUND
PMID: 17255882 (View on PubMed)

Westerlaken BO, de Kleine E, van der Laan B, Albers F. The treatment of idiopathic sudden sensorineural hearing loss using pulse therapy: a prospective, randomized, double-blind clinical trial. Laryngoscope. 2007 Apr;117(4):684-90. doi: 10.1097/mlg.0b013e3180316d3b.

Reference Type BACKGROUND
PMID: 17415139 (View on PubMed)

Zhou GP, Chen YC, Li WW, Wei HL, Yu YS, Zhou QQ, Yin X, Tao YJ, Zhang H. Aberrant functional and effective connectivity of the frontostriatal network in unilateral acute tinnitus patients with hearing loss. Brain Imaging Behav. 2022 Feb;16(1):151-160. doi: 10.1007/s11682-021-00486-9. Epub 2021 Jul 23.

Reference Type BACKGROUND
PMID: 34296381 (View on PubMed)

Aldhafeeri FM, Mackenzie I, Kay T, Alghamdi J, Sluming V. Neuroanatomical correlates of tinnitus revealed by cortical thickness analysis and diffusion tensor imaging. Neuroradiology. 2012 Aug;54(8):883-92. doi: 10.1007/s00234-012-1044-6. Epub 2012 May 22.

Reference Type BACKGROUND
PMID: 22614806 (View on PubMed)

Cai Y, Xie M, Su Y, Tong Z, Wu X, Xu W, Li J, Zhao F, Dang C, Chen G, Lan L, Shen J, Zheng Y. Aberrant Functional and Causal Connectivity in Acute Tinnitus With Sensorineural Hearing Loss. Front Neurosci. 2020 Jun 30;14:592. doi: 10.3389/fnins.2020.00592. eCollection 2020.

Reference Type BACKGROUND
PMID: 32714128 (View on PubMed)

Lefaucheur JP, Antal A, Ayache SS, Benninger DH, Brunelin J, Cogiamanian F, Cotelli M, De Ridder D, Ferrucci R, Langguth B, Marangolo P, Mylius V, Nitsche MA, Padberg F, Palm U, Poulet E, Priori A, Rossi S, Schecklmann M, Vanneste S, Ziemann U, Garcia-Larrea L, Paulus W. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol. 2017 Jan;128(1):56-92. doi: 10.1016/j.clinph.2016.10.087. Epub 2016 Oct 29.

Reference Type BACKGROUND
PMID: 27866120 (View on PubMed)

Teismann H, Wollbrink A, Okamoto H, Schlaug G, Rudack C, Pantev C. Combining transcranial direct current stimulation and tailor-made notched music training to decrease tinnitus-related distress--a pilot study. PLoS One. 2014 Feb 25;9(2):e89904. doi: 10.1371/journal.pone.0089904. eCollection 2014.

Reference Type BACKGROUND
PMID: 24587113 (View on PubMed)

Pal N, Maire R, Stephan MA, Herrmann FR, Benninger DH. Transcranial Direct Current Stimulation for the Treatment of Chronic Tinnitus: A Randomized Controlled Study. Brain Stimul. 2015 Nov-Dec;8(6):1101-7. doi: 10.1016/j.brs.2015.06.014. Epub 2015 Jun 27.

Reference Type BACKGROUND
PMID: 26198363 (View on PubMed)

Vanneste S, De Ridder D. Bifrontal transcranial direct current stimulation modulates tinnitus intensity and tinnitus-distress-related brain activity. Eur J Neurosci. 2011 Aug;34(4):605-14. doi: 10.1111/j.1460-9568.2011.07778.x. Epub 2011 Jul 25.

Reference Type BACKGROUND
PMID: 21790807 (View on PubMed)

Vanneste S, Plazier M, Ost J, van der Loo E, Van de Heyning P, De Ridder D. Bilateral dorsolateral prefrontal cortex modulation for tinnitus by transcranial direct current stimulation: a preliminary clinical study. Exp Brain Res. 2010 May;202(4):779-85. doi: 10.1007/s00221-010-2183-9. Epub 2010 Feb 26.

Reference Type BACKGROUND
PMID: 20186404 (View on PubMed)

Vanneste S, Focquaert F, Van de Heyning P, De Ridder D. Different resting state brain activity and functional connectivity in patients who respond and not respond to bifrontal tDCS for tinnitus suppression. Exp Brain Res. 2011 Apr;210(2):217-27. doi: 10.1007/s00221-011-2617-z. Epub 2011 Mar 25.

Reference Type BACKGROUND
PMID: 21437634 (View on PubMed)

Faber M, Vanneste S, Fregni F, De Ridder D. Top down prefrontal affective modulation of tinnitus with multiple sessions of tDCS of dorsolateral prefrontal cortex. Brain Stimul. 2012 Oct;5(4):492-8. doi: 10.1016/j.brs.2011.09.003. Epub 2011 Oct 5.

Reference Type BACKGROUND
PMID: 22019079 (View on PubMed)

Frank E, Schecklmann M, Landgrebe M, Burger J, Kreuzer P, Poeppl TB, Kleinjung T, Hajak G, Langguth B. Treatment of chronic tinnitus with repeated sessions of prefrontal transcranial direct current stimulation: outcomes from an open-label pilot study. J Neurol. 2012 Feb;259(2):327-33. doi: 10.1007/s00415-011-6189-4. Epub 2011 Aug 2.

Reference Type BACKGROUND
PMID: 21808984 (View on PubMed)

Vanneste S, Langguth B, De Ridder D. Do tDCS and TMS influence tinnitus transiently via a direct cortical and indirect somatosensory modulating effect? A combined TMS-tDCS and TENS study. Brain Stimul. 2011 Oct;4(4):242-52. doi: 10.1016/j.brs.2010.12.001. Epub 2011 Jan 1.

Reference Type BACKGROUND
PMID: 22032739 (View on PubMed)

Yakunina N, Nam EC. Direct and Transcutaneous Vagus Nerve Stimulation for Treatment of Tinnitus: A Scoping Review. Front Neurosci. 2021 May 28;15:680590. doi: 10.3389/fnins.2021.680590. eCollection 2021.

Reference Type BACKGROUND
PMID: 34122002 (View on PubMed)

Gordon PC, Zrenner C, Desideri D, Belardinelli P, Zrenner B, Brunoni AR, Ziemann U. Modulation of cortical responses by transcranial direct current stimulation of dorsolateral prefrontal cortex: A resting-state EEG and TMS-EEG study. Brain Stimul. 2018 Sep-Oct;11(5):1024-1032. doi: 10.1016/j.brs.2018.06.004. Epub 2018 Jun 18.

Reference Type BACKGROUND
PMID: 29921529 (View on PubMed)

Joos K, De Ridder D, Van de Heyning P, Vanneste S. Polarity specific suppression effects of transcranial direct current stimulation for tinnitus. Neural Plast. 2014;2014:930860. doi: 10.1155/2014/930860. Epub 2014 Apr 10.

Reference Type BACKGROUND
PMID: 24812586 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

SYSKY-2022-499-02

Identifier Type: -

Identifier Source: org_study_id