Viability of an Educational Program for Lifestyle Changes and an Algorithm for the Derivation of Exercise Programs in Older People at Risk of Dependency at Primary Care.
NCT ID: NCT05772910
Last Updated: 2023-12-07
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
NOT_YET_RECRUITING
NA
110 participants
INTERVENTIONAL
2024-09-01
2026-02-01
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Keywords
Explore important study keywords that can help with search, categorization, and topic discovery.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
SINGLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
EDUcation
The EDU group will assist to an individualized educative program based on intrinsic capacity optimization through lifestyle changes.
EDUcation
The education intervention will consist of an individualized educative program based on intrinsic capacity optimization through lifestyle changes. To develop the program, the program creation team will be multidisciplinary (psychologists, medical doctor, dietitian…) and will discuss goal setting, the education strategy, and retention of motivation. The experts are required to create the education program such that the participants can manage their health by themselves. The goal will be self-management of dietary habits and increases in physical activity levels for each individual case. The education program will be in Spanish or in English; as it will consist in personal counselling, even with a low level of the language the communication will be possible. The nutritional education program will be conducted every 2 weeks for 10 consecutive weeks, with 20-min counselling sessions by an expert.
EXERcise
The EXER group will follow a program focused on the specific deficit of muscular power from a simple clinical test such as the STS and, in addition, they will be evaluated to be able to prescribe training individually (evaluation of training)
EXERcise
The intervention period will have 10 weeks, in which the EXER group will carry out 2-3 sessions a week (total of 20-30 sessions). In this concurrent program, exercises of the lower extremities (leg press, abduction and plantar flexion) will be performed mainly on weight training machines. Intensity in each exercise will be individualized for each participant through a test to determine muscle power. In addition, in the last part of each session the participants will perform an endurance training type high insensitive interval training on a cycle ergometer (60-80 rpm). The intensity will be individualized to each patient through an incremental stress test until volitional exhaustion, and the subjects will alternate intervals of 30 seconds at 90% of the maximum workload, with intervals of 90 seconds at 40% of the maximum. Each session is estimated to have a total duration of 30-50 minutes.
EDU-EXER
EDU-EXER group subject develops both interventions together.
EDU-EXER
This group will carry out the same two previous interventions together.
CONtrol
CON group will continue the usual clinical treatment and their normal life.
CONtrol
CONtrol group will continue the usual clinical treatment and their normal life
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
EDUcation
The education intervention will consist of an individualized educative program based on intrinsic capacity optimization through lifestyle changes. To develop the program, the program creation team will be multidisciplinary (psychologists, medical doctor, dietitian…) and will discuss goal setting, the education strategy, and retention of motivation. The experts are required to create the education program such that the participants can manage their health by themselves. The goal will be self-management of dietary habits and increases in physical activity levels for each individual case. The education program will be in Spanish or in English; as it will consist in personal counselling, even with a low level of the language the communication will be possible. The nutritional education program will be conducted every 2 weeks for 10 consecutive weeks, with 20-min counselling sessions by an expert.
EXERcise
The intervention period will have 10 weeks, in which the EXER group will carry out 2-3 sessions a week (total of 20-30 sessions). In this concurrent program, exercises of the lower extremities (leg press, abduction and plantar flexion) will be performed mainly on weight training machines. Intensity in each exercise will be individualized for each participant through a test to determine muscle power. In addition, in the last part of each session the participants will perform an endurance training type high insensitive interval training on a cycle ergometer (60-80 rpm). The intensity will be individualized to each patient through an incremental stress test until volitional exhaustion, and the subjects will alternate intervals of 30 seconds at 90% of the maximum workload, with intervals of 90 seconds at 40% of the maximum. Each session is estimated to have a total duration of 30-50 minutes.
EDU-EXER
This group will carry out the same two previous interventions together.
CONtrol
CONtrol group will continue the usual clinical treatment and their normal life
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
I) \> 70 years of age
II) with a Barthel Index score \> 75
III) meeting at least one of the following two criteria: a score ≤9 in the short physical performance battery (SPPB) or FRAIL questionnaire with values 1 or 2.
Exclusion Criteria
II) Moderate to severe cognitive impairment (Mini-Mental State Examination\< 20 points
III) Severe pathology for which physical activity is contraindicated at the physician's discretion including but not limited to: recent acute myocardial infarction (6 months), uncontrolled cardiac arrhythmia, severe cardiac valve disease, non-controlled hypertension (\> 180/100mmHg), non-controlled/severe heart failure, severe respiratory insufficiency disease, and diabetes mellitus with acute decompensation/frequent hypoglycaemia.
70 Years
99 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University of Cadiz
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Alejandro Galán Mercant
Associate Professor
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Alejandro Galan-Mercant, PhD
Role: PRINCIPAL_INVESTIGATOR
University of Cádiz
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
References
Explore related publications, articles, or registry entries linked to this study.
Lowry KA, Vallejo AN, Studenski SA. Successful aging as a continuum of functional independence: lessons from physical disability models of aging. Aging Dis. 2012 Feb;3(1):5-15. Epub 2011 Aug 15.
Garcia-Garcia FJ, Larrion Zugasti JL, Rodriguez Manas L. [Frailty: a phenotype under review]. Gac Sanit. 2011 Dec;25 Suppl 2:51-8. doi: 10.1016/j.gaceta.2011.08.001. Epub 2011 Oct 26. Spanish.
Tavassoli N, Piau A, Berbon C, De Kerimel J, Lafont C, De Souto Barreto P, Guyonnet S, Takeda C, Carrie I, Angioni D, Paris F, Mathieu C, Ousset PJ, Balardy L, Voisin T, Sourdet S, Delrieu J, Bezombes V, Pons-Pretre V, Andrieu S, Nourhashemi F, Rolland Y, Soto ME, Beard J, Sumi Y, Araujo Carvalho I, Vellas B. Framework Implementation of the INSPIRE ICOPE-CARE Program in Collaboration with the World Health Organization (WHO) in the Occitania Region. J Frailty Aging. 2021;10(2):103-109. doi: 10.14283/jfa.2020.26.
Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013 Jun 6;153(6):1194-217. doi: 10.1016/j.cell.2013.05.039.
Warming L, Hassager C, Christiansen C. Changes in bone mineral density with age in men and women: a longitudinal study. Osteoporos Int. 2002;13(2):105-12. doi: 10.1007/s001980200001.
Pahor M, Guralnik JM, Ambrosius WT, Blair S, Bonds DE, Church TS, Espeland MA, Fielding RA, Gill TM, Groessl EJ, King AC, Kritchevsky SB, Manini TM, McDermott MM, Miller ME, Newman AB, Rejeski WJ, Sink KM, Williamson JD; LIFE study investigators. Effect of structured physical activity on prevention of major mobility disability in older adults: the LIFE study randomized clinical trial. JAMA. 2014 Jun 18;311(23):2387-96. doi: 10.1001/jama.2014.5616.
Berryman JW. Exercise is medicine: a historical perspective. Curr Sports Med Rep. 2010 Jul-Aug;9(4):195-201. doi: 10.1249/JSR.0b013e3181e7d86d.
Cadore EL, Izquierdo M. Exercise interventions in polypathological aging patients that coexist with diabetes mellitus: improving functional status and quality of life. Age (Dordr). 2015 Jun;37(3):64. doi: 10.1007/s11357-015-9800-2. Epub 2015 Jun 9.
Izquierdo M, Rodriguez-Manas L, Casas-Herrero A, Martinez-Velilla N, Cadore EL, Sinclair AJ. Is It Ethical Not to Precribe Physical Activity for the Elderly Frail? J Am Med Dir Assoc. 2016 Sep 1;17(9):779-81. doi: 10.1016/j.jamda.2016.06.015. Epub 2016 Jul 28. No abstract available.
Ahtiainen JP, Walker S, Peltonen H, Holviala J, Sillanpaa E, Karavirta L, Sallinen J, Mikkola J, Valkeinen H, Mero A, Hulmi JJ, Hakkinen K. Heterogeneity in resistance training-induced muscle strength and mass responses in men and women of different ages. Age (Dordr). 2016 Feb;38(1):10. doi: 10.1007/s11357-015-9870-1. Epub 2016 Jan 15.
Bonafiglia JT, Rotundo MP, Whittall JP, Scribbans TD, Graham RB, Gurd BJ. Inter-Individual Variability in the Adaptive Responses to Endurance and Sprint Interval Training: A Randomized Crossover Study. PLoS One. 2016 Dec 9;11(12):e0167790. doi: 10.1371/journal.pone.0167790. eCollection 2016.
Pickering, C. & Kiely, J. Understanding Personalized Training Responses: Can Genetic Assessment Help? Open Sports Sci. 2017; J 10, 191-213.
Sarzynski MA, Ghosh S, Bouchard C. Genomic and transcriptomic predictors of response levels to endurance exercise training. J Physiol. 2017 May 1;595(9):2931-2939. doi: 10.1113/JP272559. Epub 2016 Jul 3.
Delmonico MJ, Kostek MC, Doldo NA, Hand BD, Walsh S, Conway JM, Carignan CR, Roth SM, Hurley BF. Alpha-actinin-3 (ACTN3) R577X polymorphism influences knee extensor peak power response to strength training in older men and women. J Gerontol A Biol Sci Med Sci. 2007 Feb;62(2):206-12. doi: 10.1093/gerona/62.2.206.
Charbonneau DE, Hanson ED, Ludlow AT, Delmonico MJ, Hurley BF, Roth SM. ACE genotype and the muscle hypertrophic and strength responses to strength training. Med Sci Sports Exerc. 2008 Apr;40(4):677-83. doi: 10.1249/MSS.0b013e318161eab9.
Espinosa-Salinas I, de la Iglesia R, Colmenarejo G, Molina S, Reglero G, Martinez JA, Loria-Kohen V, Ramirez de Molina A. GCKR rs780094 Polymorphism as A Genetic Variant Involved in Physical Exercise. Genes (Basel). 2019 Jul 28;10(8):570. doi: 10.3390/genes10080570.
Pickering C, Kiely J. ACTN3: More than Just a Gene for Speed. Front Physiol. 2017 Dec 18;8:1080. doi: 10.3389/fphys.2017.01080. eCollection 2017.
Pickering C, Kiely J. ACTN3, Morbidity, and Healthy Aging. Front Genet. 2018 Jan 24;9:15. doi: 10.3389/fgene.2018.00015. eCollection 2018.
Alibegovic AC, Sonne MP, Hojbjerre L, Bork-Jensen J, Jacobsen S, Nilsson E, Faerch K, Hiscock N, Mortensen B, Friedrichsen M, Stallknecht B, Dela F, Vaag A. Insulin resistance induced by physical inactivity is associated with multiple transcriptional changes in skeletal muscle in young men. Am J Physiol Endocrinol Metab. 2010 Nov;299(5):E752-63. doi: 10.1152/ajpendo.00590.2009. Epub 2010 Aug 24.
Tseng SH, Lee WJ, Peng LN, Lin MH, Chen LK. Associations between hemoglobin levels and sarcopenia and its components: Results from the I-Lan longitudinal study. Exp Gerontol. 2021 Jul 15;150:111379. doi: 10.1016/j.exger.2021.111379. Epub 2021 Apr 27.
Semba RD, Gonzalez-Freire M, Tanaka T, Biancotto A, Zhang P, Shardell M, Moaddel R; CHI Consortium; Ferrucci L. Elevated Plasma Growth and Differentiation Factor 15 Is Associated With Slower Gait Speed and Lower Physical Performance in Healthy Community-Dwelling Adults. J Gerontol A Biol Sci Med Sci. 2020 Jan 1;75(1):175-180. doi: 10.1093/gerona/glz071.
Kim M, Walston JD, Won CW. Associations Between Elevated Growth Differentiation Factor-15 and Sarcopenia Among Community-dwelling Older Adults. J Gerontol A Biol Sci Med Sci. 2022 Apr 1;77(4):770-780. doi: 10.1093/gerona/glab201.
Picca A, Guerra F, Calvani R, Marini F, Biancolillo A, Landi G, Beli R, Landi F, Bernabei R, Bentivoglio AR, Monaco MRL, Bucci C, Marzetti E. Mitochondrial Signatures in Circulating Extracellular Vesicles of Older Adults with Parkinson's Disease: Results from the EXosomes in PArkiNson's Disease (EXPAND) Study. J Clin Med. 2020 Feb 12;9(2):504. doi: 10.3390/jcm9020504.
McCarthy JJ. The MyomiR network in skeletal muscle plasticity. Exerc Sport Sci Rev. 2011 Jul;39(3):150-4. doi: 10.1097/JES.0b013e31821c01e1.
Liu HC, Han DS, Hsu CC, Wang JS. Circulating MicroRNA-486 and MicroRNA-146a serve as potential biomarkers of sarcopenia in the older adults. BMC Geriatr. 2021 Jan 30;21(1):86. doi: 10.1186/s12877-021-02040-0.
Cannataro R, Carbone L, Petro JL, Cione E, Vargas S, Angulo H, Forero DA, Odriozola-Martinez A, Kreider RB, Bonilla DA. Sarcopenia: Etiology, Nutritional Approaches, and miRNAs. Int J Mol Sci. 2021 Sep 8;22(18):9724. doi: 10.3390/ijms22189724.
Chang KV, Chen YC, Wu WT, Shen HJ, Huang KC, Chu HP, Han DS. Expression of Telomeric Repeat-Containing RNA Decreases in Sarcopenia and Increases after Exercise and Nutrition Intervention. Nutrients. 2020 Dec 8;12(12):3766. doi: 10.3390/nu12123766.
Galan-Mercant A, Baron-Lopez FJ, Labajos-Manzanares MT, Cuesta-Vargas AI. Reliability and criterion-related validity with a smartphone used in timed-up-and-go test. Biomed Eng Online. 2014 Dec 2;13:156. doi: 10.1186/1475-925X-13-156.
Cuesta-Vargas AI, Galan-Mercant A, Williams JM. The use of inertial sensors system for human motion analysis. Phys Ther Rev. 2010 Dec;15(6):462-473. doi: 10.1179/1743288X11Y.0000000006.
McGinley JL, Baker R, Wolfe R, Morris ME. The reliability of three-dimensional kinematic gait measurements: a systematic review. Gait Posture. 2009 Apr;29(3):360-9. doi: 10.1016/j.gaitpost.2008.09.003. Epub 2008 Nov 13.
Nawaratne R, Alahakoon D, De Silva D, O'Halloran PD, Montoye AH, Staley K, Nicholson M, Kingsley MI. Deep Learning to Predict Energy Expenditure and Activity Intensity in Free Living Conditions using Wrist-specific Accelerometry. J Sports Sci. 2021 Mar;39(6):683-690. doi: 10.1080/02640414.2020.1841394. Epub 2020 Oct 30.
Rockwood K, Abeysundera MJ, Mitnitski A. How should we grade frailty in nursing home patients? J Am Med Dir Assoc. 2007 Nov;8(9):595-603. doi: 10.1016/j.jamda.2007.07.012. Epub 2007 Oct 22.
Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, Seeman T, Tracy R, Kop WJ, Burke G, McBurnie MA; Cardiovascular Health Study Collaborative Research Group. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001 Mar;56(3):M146-56. doi: 10.1093/gerona/56.3.m146.
Gruenewald TL, Seeman TE, Karlamangla AS, Sarkisian CA. Allostatic load and frailty in older adults. J Am Geriatr Soc. 2009 Sep;57(9):1525-31. doi: 10.1111/j.1532-5415.2009.02389.x. Epub 2009 Jul 21.
Losa-Reyna J, Baltasar-Fernandez I, Alcazar J, Navarro-Cruz R, Garcia-Garcia FJ, Alegre LM, Alfaro-Acha A. Effect of a short multicomponent exercise intervention focused on muscle power in frail and pre frail elderly: A pilot trial. Exp Gerontol. 2019 Jan;115:114-121. doi: 10.1016/j.exger.2018.11.022. Epub 2018 Dec 4.
Alcazar J, Losa-Reyna J, Rodriguez-Lopez C, Alfaro-Acha A, Rodriguez-Manas L, Ara I, Garcia-Garcia FJ, Alegre LM. The sit-to-stand muscle power test: An easy, inexpensive and portable procedure to assess muscle power in older people. Exp Gerontol. 2018 Oct 2;112:38-43. doi: 10.1016/j.exger.2018.08.006. Epub 2018 Sep 1.
Rodriguez-Lopez C, Alcazar J, Losa-Reyna J, Martin-Espinosa NM, Baltasar-Fernandez I, Ara I, Csapo R, Alegre LM. Effects of Power-Oriented Resistance Training With Heavy vs. Light Loads on Muscle-Tendon Function in Older Adults: A Study Protocol for a Randomized Controlled Trial. Front Physiol. 2021 Feb 18;12:635094. doi: 10.3389/fphys.2021.635094. eCollection 2021.
Losa-Reyna J, Alcazar J, Rodriguez-Gomez I, Alfaro-Acha A, Alegre LM, Rodriguez-Manas L, Ara I, Garcia-Garcia FJ. Low relative mechanical power in older adults: An operational definition and algorithm for its application in the clinical setting. Exp Gerontol. 2020 Dec;142:111141. doi: 10.1016/j.exger.2020.111141. Epub 2020 Oct 27.
Mateos-Angulo A, Galan-Mercant A, Cuesta-Vargas AI. Muscle thickness contribution to sit-to-stand ability in institutionalized older adults. Aging Clin Exp Res. 2020 Aug;32(8):1477-1483. doi: 10.1007/s40520-019-01328-x. Epub 2019 Aug 28.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
PR2022-018
Identifier Type: -
Identifier Source: org_study_id