Use of Allograft Adipose Matrix for Small Joint Arthritis of the Hand
NCT ID: NCT05747469
Last Updated: 2026-01-02
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
ACTIVE_NOT_RECRUITING
EARLY_PHASE1
34 participants
INTERVENTIONAL
2023-08-28
2027-01-01
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
As standard of care, routine strength, pain scale scores (VAS) and range of motion will be recorded, a baseline disability survey (DASH score) will also be administered. After these have all been recorded and administered in a separate visit the patient will undergo the lipofilling procedure.
The subject population will include patients over the age of 18 who present with joint pain of the hand with radiographic evidence of osteoarthritis.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Autologous Intra-Articular Micro-Fragmented Adipose Transfer for the Treatment of Thumb Carpometacarpal Joint Arthritis
NCT05005000
Treatment of Knee Osteoarthritis (KOA) by Injection of Autologous Adipose-derived Vascular Matrix Components (SVF) Into Joint Cavity
NCT06109220
Evaluation of the Efficacy of an Intra-articular Injection of Autologous Microfat Combined With Autologous Platelet-enriched Plasma in the Treatment of Radiocarpal Osteoarthritis: a Randomized Controlled Non-inferiority Trial Versus Total Wrist Denervation (Established Standard Treatment).
NCT05501743
A Study Evaluating the Efficacy of a Single Injection Autologous Adipose Derived Mesenchymal Stromal Cells in Patients With Knee Osteoarthritis
NCT02838069
Adipose-Derived Biocellular Regenerative Therapy for Osteoarthritis
NCT04238143
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
1. To determine the safety of use of Leneva as a lipofilling alternative to autologous fat grafting for arthritis of the hand
a. To determine safety, the investigators will evaluate for any adverse reactions to the injection at each of the follow up time-points
2. To determine the efficacy of the technique as measured by clinical outcomes in terms of pain, disability, range of motion and strength
a. To determine efficacy, the investigators will measure visual analogue pain scale scores as measures by visual analogue scale, disability scores as measured with DASH scores, and standardized range of motion and strengths scores as measured by the same study administrator at each of the follow up time points
3. To determine patient satisfaction with the procedure a. To determine patient satisfaction, the investigators will administer a survey at each of the follow up time points
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Adipose Allograft Matrix (AAM)
Using fluoroscopic guidance (X-ray), a needle will be injected into the joint space. 1 cc of Leneva (adipose allograft matrix, MTF Biologics) will be injected into the joint.
local anaesthetic injection
Subcutaneous local anesthesia with 1% lidocaine without epinephrine is administered to the skin overlying the joint.
Human Adipose Allograft
Light axial traction of the digit is used to open the joint space when introducing the 18-gauge needle. Fluoroscopy is used to assist with visualization 1 cc of Leneva is injected into the CMC joint and 0.5 cc in the IP, PIP and DIP joints. The puncture is dressed with a band-aid and coban wrap, which will be worn for 48 hours. Return to work and normal use of the hand is recommended at 48 hours. No narcotics are prescribed.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
local anaesthetic injection
Subcutaneous local anesthesia with 1% lidocaine without epinephrine is administered to the skin overlying the joint.
Human Adipose Allograft
Light axial traction of the digit is used to open the joint space when introducing the 18-gauge needle. Fluoroscopy is used to assist with visualization 1 cc of Leneva is injected into the CMC joint and 0.5 cc in the IP, PIP and DIP joints. The puncture is dressed with a band-aid and coban wrap, which will be worn for 48 hours. Return to work and normal use of the hand is recommended at 48 hours. No narcotics are prescribed.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Radiographic evidence of osteoarthritis.
Exclusion Criteria
* Rheumatoid or other inflammatory arthritis condition
* Collagen vascular disease
* Pregnancy or breast-feeding
* Congestive heart failure
* Chronic obstructive pulmonary disease
* Chronic renal failure
* Those who had medication or oral supplements for the previous 4 weeks that could prolong bleeding time (e.g.; Aspirin, Plavix).
18 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Cedars-Sinai Medical Center
OTHER
Musculoskeletal Transplant Foundation
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Meghan McCullough, MD
Principal Investigator
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Meghan McCullough, MD
Role: PRINCIPAL_INVESTIGATOR
Cedars-Sinai Medical Center
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Cedars-Sinai Medical Center
Los Angeles, California, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Herold C, Rennekampff HO, Groddeck R, Allert S. Autologous Fat Transfer for Thumb Carpometacarpal Joint Osteoarthritis: A Prospective Study. Plast Reconstr Surg. 2017 Aug;140(2):327-335. doi: 10.1097/PRS.0000000000003510.
IJsselstein CB, van Egmond DB, Hovius SE, van der Meulen JC. Results of small-joint arthrodesis: comparison of Kirschner wire fixation with tension band wire technique. J Hand Surg Am. 1992 Sep;17(5):952-6. doi: 10.1016/0363-5023(92)90476-6.
Heyworth BE, Lee JH, Kim PD, Lipton CB, Strauch RJ, Rosenwasser MP. Hylan versus corticosteroid versus placebo for treatment of basal joint arthritis: a prospective, randomized, double-blinded clinical trial. J Hand Surg Am. 2008 Jan;33(1):40-8. doi: 10.1016/j.jhsa.2007.10.009.
Haas EM, Eisele A, Arnoldi A, Paolini M, Ehrl D, Volkmer E, Giunta RE. One-Year Outcomes of Intraarticular Fat Transplantation for Thumb Carpometacarpal Joint Osteoarthritis: Case Review of 99 Joints. Plast Reconstr Surg. 2020 Jan;145(1):151-159. doi: 10.1097/PRS.0000000000006378.
Holland C, Jaeger L, Smentkowski U, Weber B, Otto C. Septic and aseptic complications of corticosteroid injections: an assessment of 278 cases reviewed by expert commissions and mediation boards from 2005 to 2009. Dtsch Arztebl Int. 2012 Jun;109(24):425-30. doi: 10.3238/arztebl.2012.0425. Epub 2012 Jun 15.
McGarry JG, Daruwalla ZJ. The efficacy, accuracy and complications of corticosteroid injections of the knee joint. Knee Surg Sports Traumatol Arthrosc. 2011 Oct;19(10):1649-54. doi: 10.1007/s00167-010-1380-1. Epub 2011 Jan 11.
Buck-Gramcko D. [Denervation of the wrist joint and interphalageal joints]. Handchirurgie. 1969;1(4):179-81. No abstract available. German.
Lucht U, Vang PS, Munck J. Soft tissue interposition arthroplasty for osteoarthritis of the carpometacarpal joint of the thumb. Acta Orthop Scand. 1980 Oct;51(5):767-71. doi: 10.3109/17453678008990872.
Deb R, Sauerbier M, Rauschmann MA. [History of arthroplasty for finger joints]. Orthopade. 2003 Sep;32(9):770-8. doi: 10.1007/s00132-003-0518-y. German.
Bruser P. [Modified volar plate arthroplasty for posttraumatic and idiopathic osteoarthritis of the metacarpophalangeal and proximal interphalangeal joints]. Orthopade. 2008 Dec;37(12):1180-6. doi: 10.1007/s00132-008-1324-3. German.
Swanson AB. Disabling arthritis at the base of the thumb: treatment by resection of the trapezium and flexible (silicone) implant arthroplasty. J Bone Joint Surg Am. 1972 Apr;54(3):456-71. No abstract available.
Swanson AB. Flexible implant arthroplasty for arthritic finger joints: rationale, technique, and results of treatment. J Bone Joint Surg Am. 1972 Apr;54(3):435-55. No abstract available.
Heers G, Grifka J, Borisch N. [First results after implantation of a pyrocarbon-endoprosthesis in patients with degenerative arthritis]. Z Orthop Ihre Grenzgeb. 2006 Nov-Dec;144(6):609-13. doi: 10.1055/s-2006-955189. German.
Damia E, Chicharro D, Lopez S, Cuervo B, Rubio M, Sopena JJ, Vilar JM, Carrillo JM. Adipose-Derived Mesenchymal Stem Cells: Are They a Good Therapeutic Strategy for Osteoarthritis? Int J Mol Sci. 2018 Jun 30;19(7):1926. doi: 10.3390/ijms19071926.
Black LL, Gaynor J, Adams C, Dhupa S, Sams AE, Taylor R, Harman S, Gingerich DA, Harman R. Effect of intraarticular injection of autologous adipose-derived mesenchymal stem and regenerative cells on clinical signs of chronic osteoarthritis of the elbow joint in dogs. Vet Ther. 2008 Fall;9(3):192-200.
ter Huurne M, Schelbergen R, Blattes R, Blom A, de Munter W, Grevers LC, Jeanson J, Noel D, Casteilla L, Jorgensen C, van den Berg W, van Lent PL. Antiinflammatory and chondroprotective effects of intraarticular injection of adipose-derived stem cells in experimental osteoarthritis. Arthritis Rheum. 2012 Nov;64(11):3604-13. doi: 10.1002/art.34626.
Zhang L, Wang XY, Zhou PJ, He Z, Yan HZ, Xu DD, Wang Y, Fu WY, Ruan BB, Wang S, Chen HX, Liu QY, Zhang YX, Liu Z, Wang YF. Use of immune modulation by human adipose-derived mesenchymal stem cells to treat experimental arthritis in mice. Am J Transl Res. 2017 May 15;9(5):2595-2607. eCollection 2017.
Wu L, Cai X, Zhang S, Karperien M, Lin Y. Regeneration of articular cartilage by adipose tissue derived mesenchymal stem cells: perspectives from stem cell biology and molecular medicine. J Cell Physiol. 2013 May;228(5):938-44. doi: 10.1002/jcp.24255.
Chiari C, Walzer S, Stelzeneder D, Schreiner M, Windhager R. [Therapeutic utilization of stem cells in orthopedics]. Orthopade. 2017 Dec;46(12):1077-1090. doi: 10.1007/s00132-017-3475-6. German.
Banyard DA, Borad V, Amezcua E, Wirth GA, Evans GR, Widgerow AD. Preparation, Characterization, and Clinical Implications of Human Decellularized Adipose Tissue Extracellular Matrix (hDAM): A Comprehensive Review. Aesthet Surg J. 2016 Mar;36(3):349-57. doi: 10.1093/asj/sjv170. Epub 2015 Sep 1.
Sano H, Orbay H, Terashi H, Hyakusoku H, Ogawa R. Acellular adipose matrix as a natural scaffold for tissue engineering. J Plast Reconstr Aesthet Surg. 2014 Jan;67(1):99-106. doi: 10.1016/j.bjps.2013.08.006. Epub 2013 Sep 12.
Han TT, Toutounji S, Amsden BG, Flynn LE. Adipose-derived stromal cells mediate in vivo adipogenesis, angiogenesis and inflammation in decellularized adipose tissue bioscaffolds. Biomaterials. 2015 Dec;72:125-37. doi: 10.1016/j.biomaterials.2015.08.053. Epub 2015 Aug 31.
Adam Young D, Bajaj V, Christman KL. Award winner for outstanding research in the PhD category, 2014 Society for Biomaterials annual meeting and exposition, Denver, Colorado, April 16-19, 2014: Decellularized adipose matrix hydrogels stimulate in vivo neovascularization and adipose formation. J Biomed Mater Res A. 2014 Jun;102(6):1641-51. doi: 10.1002/jbm.a.35109. Epub 2014 Feb 24.
Kokai LE, Sivak WN, Schilling BK, Karunamurthy A, Egro FM, Schusterman MA, Minteer DM, Simon P, D'Amico RA, Rubin JP. Clinical Evaluation of an Off-the-Shelf Allogeneic Adipose Matrix for Soft Tissue Reconstruction. Plast Reconstr Surg Glob Open. 2020 Jan 27;8(1):e2574. doi: 10.1097/GOX.0000000000002574. eCollection 2020 Jan.
Flynn LE. The use of decellularized adipose tissue to provide an inductive microenvironment for the adipogenic differentiation of human adipose-derived stem cells. Biomaterials. 2010 Jun;31(17):4715-24. doi: 10.1016/j.biomaterials.2010.02.046. Epub 2010 Mar 20.
Choi JS, Kim BS, Kim JY, Kim JD, Choi YC, Yang HJ, Park K, Lee HY, Cho YW. Decellularized extracellular matrix derived from human adipose tissue as a potential scaffold for allograft tissue engineering. J Biomed Mater Res A. 2011 Jun 1;97(3):292-9. doi: 10.1002/jbm.a.33056. Epub 2011 Mar 29.
Brown BN, Freund JM, Han L, Rubin JP, Reing JE, Jeffries EM, Wolf MT, Tottey S, Barnes CA, Ratner BD, Badylak SF. Comparison of three methods for the derivation of a biologic scaffold composed of adipose tissue extracellular matrix. Tissue Eng Part C Methods. 2011 Apr;17(4):411-21. doi: 10.1089/ten.TEC.2010.0342. Epub 2011 Feb 5.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
STUDY00002134
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.