A Study of QBECO Versus Placebo in the Treatment of Colorectal Cancer That Has Spread to the Liver

NCT ID: NCT05677113

Last Updated: 2025-01-29

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

RECRUITING

Clinical Phase

PHASE2

Total Enrollment

115 participants

Study Classification

INTERVENTIONAL

Study Start Date

2023-08-30

Study Completion Date

2030-02-01

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The goal of this type of clinical trial is t to answer the following question: Can the chance of colorectal cancer progressing be lowered by taking a medication, QBECO, before and after surgery? The goal of this study is to find out if this approach is better or worse than the standard of care for your type of cancer. The standard of care is defined as care most people get for metastatic colorectal cancer. There is currently no standard of care drug being given before or after surgery to prevent further spread of your cancer. Participants will be asked to self-inject the study medication before surgery for minimum of 11 days and after surgery for minimum of 41 days. Participants will be followed up every 3 months for 2 years, with a final visit at year 5.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

PERIOP-06 is a multicenter, phase II, blinded, randomized, placebo-controlled trial in adult patients planned to undergo resection of colorectal liver metastases (CRLM) for complete clearance of all visible disease. The investigational product for the study is QBECO. QBECO is a site specific immunomodulator (SSI) designed to promote innate immune responses in the gastrointestinal tract and related organs, including the liver. This trial is motivated by the promising preclinical and clinical data supporting the safety and efficacy of QBECO in attenuating postoperative immunosuppression and the resulting proliferation of cancer.

The primary objective of this randomized controlled trial is to determine if QBECO administered perioperatively can improve 2-year Progression-Free Survival in adult patients undergoing resection of CRLMs for complete clearance of metastatic disease. The main secondary objectives will be to:

1. Determine the effect of QBECO on the frequency and kinetics of clearance (and recurrence) of circulating tumor DNA (ctDNA) in the postoperative period and further evaluate the use ctDNA as part of ongoing surveillance.
2. Determine the side-effect profile of perioperative QBECO.
3. Determine the effect of QBECO on 5-year overall survival

Approximately 115 participants will be randomized to receive a placebo or the investigational product, QBECO. QBECO or placebo will be administered according to the following regimen: 0.1mL subcutaneous injections every two days for 11-120 days preoperatively, and 41 days postoperatively. Participants will be followed for 5 years after surgery.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Colorectal Cancer Liver Metastases

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Primary Study Purpose

TREATMENT

Blinding Strategy

TRIPLE

Participants Caregivers Investigators

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

QBECO

QBECO is an SSI formulated from inactivated E. coli bacteria that is specifically designed to target pathologies of the gastrointestinal (GI) tract and related organs, such as the liver. This trial will test the hypothesis that in patients undergoing resection of colorectal liver metastases (CRLMs), perioperative treatment with QBECO will attenuate the postoperative immune suppression and will improve progression-free survival (PFS).

Group Type EXPERIMENTAL

QBECO

Intervention Type DRUG

QBECO is a site specific immunomodulator (SSI) designed to promote innate immune responses in the gastrointestinal tract and related organs, including the liver. QBECO will be administered according to the following regimen: 0.1mL self-administered subcutaneous injections every 2 days for 11-120 days preoperatively, and 41 days postoperatively.

Placebo

A placebo is a liquid that looks like the study drug, but contains no medication.

Group Type PLACEBO_COMPARATOR

Placebo

Intervention Type DRUG

Placebo will be prepared in the same way as the IP. Placebo will be administered according to the following regimen: 0.1mL self-administered subcutaneous injections every 2 days for 11-120 days preoperatively, and 41 days postoperatively.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

QBECO

QBECO is a site specific immunomodulator (SSI) designed to promote innate immune responses in the gastrointestinal tract and related organs, including the liver. QBECO will be administered according to the following regimen: 0.1mL self-administered subcutaneous injections every 2 days for 11-120 days preoperatively, and 41 days postoperatively.

Intervention Type DRUG

Placebo

Placebo will be prepared in the same way as the IP. Placebo will be administered according to the following regimen: 0.1mL self-administered subcutaneous injections every 2 days for 11-120 days preoperatively, and 41 days postoperatively.

Intervention Type DRUG

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Adults aged 18 years or older at time of enrollment.
* Pathologic diagnosis of colorectal carcinoma with clinical diagnosis of liver metastases
* Planned to undergo resection of liver lesions for complete clearance of all visible metastatic disease. This will include those who may undergo synchronous resection of the primary colorectal cancer and/or those who may receive a combination of surgery and ablation to treat all lesions.
* Computerized Tomography (CT) of the chest, abdomen, and pelvis with intravenous (IV) contrast within 6 weeks prior to enrollment.
* MRI of the liver within 6 weeks prior to enrollment OR within 6 weeks prior to starting neoadjuvant chemotherapy (for patients treated with chemotherapy).
* Planned to receive the last dose of neoadjuvant chemotherapy at least 25 days prior to surgery (for patients treated with neoadjuvant chemotherapy).
* Agree to comply with the contraceptive requirements of the protocol when applicable
* Willing and able to either perform subcutaneous injections according to the study protocol, or receive the injections from a caregiver delegated by the participant.
* Able to provide informed consent or has a substitute decision maker capable of providing consent on their behalf.

Exclusion Criteria

* Prior or current evidence of extrahepatic metastases. Patients with small (\<1.0 cm) indeterminate pulmonary nodules may be included at the investigator's discretion.
* Prior hepatic arterial infusion or embolization. Prior portal vein embolization, ablation, or liver resection are permitted.
* Patients with any invasive cancer history other than colorectal cancer in the last 5 years. In situ disease (e.g., melanoma in situ, ductal carcinoma in situ of the breast) or non melanoma skin cancers are permitted.
* Patients with a documented history of clinically severe autoimmune disease or a syndrome that requires systemic steroids or immunosuppressive agents. This includes patient requiring systemic treatment with either corticosteroids (\> 10 mg daily prednisone equivalent, or depot corticosteroids in the 6 weeks before enrollment) or immunosuppressant drugs (such as azathioprine, tacrolimus, cyclosporine, etc.) within the 14 days prior to enrollment or a reasonable expectation that the patient may require such treatment during the course of the study. Inhaled or topical or inter-articular steroids, and adrenal replacement steroid doses ≤ 10 mg daily prednisone equivalent, are permitted in the absence of active autoimmune disease. Steroids used for premedication prior to chemotherapy or as part of a chemotherapy regimen are allowed.
* Patients with known active human immunodeficiency virus (HIV), Hepatitis B, or Hepatitis C infections.
* Pregnant patients or those who are nursing an infant
Minimum Eligible Age

18 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Sunnybrook Health Sciences Centre

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Paul Karanicolas

Role: PRINCIPAL_INVESTIGATOR

[email protected]

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Hamilton Health Science Centre

Hamilton, Ontario, Canada

Site Status NOT_YET_RECRUITING

London Health Science Centre

London, Ontario, Canada

Site Status NOT_YET_RECRUITING

The Ottawa Hospital

Ottawa, Ontario, Canada

Site Status RECRUITING

Sunnybrook Health Science Centre

Toronto, Ontario, Canada

Site Status RECRUITING

Countries

Review the countries where the study has at least one active or historical site.

Canada

Central Contacts

Reach out to these primary contacts for questions about participation or study logistics.

Hal Gunn

Role: CONTACT

604.734.1450

Ellen Green

Role: CONTACT

Facility Contacts

Find local site contact details for specific facilities participating in the trial.

Meaghan Preston

Role: primary

Crystal Engelage

Role: primary

Rose Leclerc

Role: primary

References

Explore related publications, articles, or registry entries linked to this study.

Tsuchiya Y, Sawada S, Yoshioka I, Ohashi Y, Matsuo M, Harimaya Y, Tsukada K, Saiki I. Increased surgical stress promotes tumor metastasis. Surgery. 2003 May;133(5):547-55. doi: 10.1067/msy.2003.141.

Reference Type BACKGROUND
PMID: 12773983 (View on PubMed)

Tai LH, Zhang J, Scott KJ, de Souza CT, Alkayyal AA, Ananth AA, Sahi S, Adair RA, Mahmoud AB, Sad S, Bell JC, Makrigiannis AP, Melcher AA, Auer RC. Perioperative influenza vaccination reduces postoperative metastatic disease by reversing surgery-induced dysfunction in natural killer cells. Clin Cancer Res. 2013 Sep 15;19(18):5104-15. doi: 10.1158/1078-0432.CCR-13-0246. Epub 2013 Jul 23.

Reference Type BACKGROUND
PMID: 23881927 (View on PubMed)

Tai LH, Alkayyal AA, Leslie AL, Sahi S, Bennett S, Tanese de Souza C, Baxter K, Angka L, Xu R, Kennedy MA, Auer RC. Phosphodiesterase-5 inhibition reduces postoperative metastatic disease by targeting surgery-induced myeloid derived suppressor cell-dependent inhibition of Natural Killer cell cytotoxicity. Oncoimmunology. 2018 Mar 1;7(6):e1431082. doi: 10.1080/2162402X.2018.1431082. eCollection 2018.

Reference Type BACKGROUND
PMID: 29872554 (View on PubMed)

Tai LH, de Souza CT, Belanger S, Ly L, Alkayyal AA, Zhang J, Rintoul JL, Ananth AA, Lam T, Breitbach CJ, Falls TJ, Kirn DH, Bell JC, Makrigiannis AP, Auer RA. Preventing postoperative metastatic disease by inhibiting surgery-induced dysfunction in natural killer cells. Cancer Res. 2013 Jan 1;73(1):97-107. doi: 10.1158/0008-5472.CAN-12-1993. Epub 2012 Oct 22.

Reference Type BACKGROUND
PMID: 23090117 (View on PubMed)

Seth R, Tai LH, Falls T, de Souza CT, Bell JC, Carrier M, Atkins H, Boushey R, Auer RA. Surgical stress promotes the development of cancer metastases by a coagulation-dependent mechanism involving natural killer cells in a murine model. Ann Surg. 2013 Jul;258(1):158-68. doi: 10.1097/SLA.0b013e31826fcbdb.

Reference Type BACKGROUND
PMID: 23108132 (View on PubMed)

Ananth AA, Tai LH, Lansdell C, Alkayyal AA, Baxter KE, Angka L, Zhang J, Tanese de Souza C, Stephenson KB, Parato K, Bramson JL, Bell JC, Lichty BD, Auer RC. Surgical Stress Abrogates Pre-Existing Protective T Cell Mediated Anti-Tumor Immunity Leading to Postoperative Cancer Recurrence. PLoS One. 2016 May 19;11(5):e0155947. doi: 10.1371/journal.pone.0155947. eCollection 2016.

Reference Type BACKGROUND
PMID: 27196057 (View on PubMed)

Gabrilovich DI. Myeloid-Derived Suppressor Cells. Cancer Immunol Res. 2017 Jan;5(1):3-8. doi: 10.1158/2326-6066.CIR-16-0297.

Reference Type BACKGROUND
PMID: 28052991 (View on PubMed)

Manz MG, Boettcher S. Emergency granulopoiesis. Nat Rev Immunol. 2014 May;14(5):302-14. doi: 10.1038/nri3660. Epub 2014 Apr 22.

Reference Type BACKGROUND
PMID: 24751955 (View on PubMed)

Angka L, Martel AB, Kilgour M, Jeong A, Sadiq M, de Souza CT, Baker L, Kennedy MA, Kekre N, Auer RC. Natural Killer Cell IFNgamma Secretion is Profoundly Suppressed Following Colorectal Cancer Surgery. Ann Surg Oncol. 2018 Nov;25(12):3747-3754. doi: 10.1245/s10434-018-6691-3. Epub 2018 Sep 5.

Reference Type BACKGROUND
PMID: 30187278 (View on PubMed)

Zhang J, Tai LH, Ilkow CS, Alkayyal AA, Ananth AA, de Souza CT, Wang J, Sahi S, Ly L, Lefebvre C, Falls TJ, Stephenson KB, Mahmoud AB, Makrigiannis AP, Lichty BD, Bell JC, Stojdl DF, Auer RC. Maraba MG1 virus enhances natural killer cell function via conventional dendritic cells to reduce postoperative metastatic disease. Mol Ther. 2014 Jul;22(7):1320-1332. doi: 10.1038/mt.2014.60. Epub 2014 Apr 3.

Reference Type BACKGROUND
PMID: 24695102 (View on PubMed)

Mitroulis I, Ruppova K, Wang B, Chen LS, Grzybek M, Grinenko T, Eugster A, Troullinaki M, Palladini A, Kourtzelis I, Chatzigeorgiou A, Schlitzer A, Beyer M, Joosten LAB, Isermann B, Lesche M, Petzold A, Simons K, Henry I, Dahl A, Schultze JL, Wielockx B, Zamboni N, Mirtschink P, Coskun U, Hajishengallis G, Netea MG, Chavakis T. Modulation of Myelopoiesis Progenitors Is an Integral Component of Trained Immunity. Cell. 2018 Jan 11;172(1-2):147-161.e12. doi: 10.1016/j.cell.2017.11.034.

Reference Type BACKGROUND
PMID: 29328910 (View on PubMed)

Kaufmann E, Sanz J, Dunn JL, Khan N, Mendonca LE, Pacis A, Tzelepis F, Pernet E, Dumaine A, Grenier JC, Mailhot-Leonard F, Ahmed E, Belle J, Besla R, Mazer B, King IL, Nijnik A, Robbins CS, Barreiro LB, Divangahi M. BCG Educates Hematopoietic Stem Cells to Generate Protective Innate Immunity against Tuberculosis. Cell. 2018 Jan 11;172(1-2):176-190.e19. doi: 10.1016/j.cell.2017.12.031.

Reference Type BACKGROUND
PMID: 29328912 (View on PubMed)

Netea MG, Joosten LAB, van der Meer JWM. Hypothesis: stimulation of trained immunity as adjunctive immunotherapy in cancer. J Leukoc Biol. 2017 Dec;102(6):1323-1332. doi: 10.1189/jlb.5RI0217-064RR. Epub 2017 Oct 10.

Reference Type BACKGROUND
PMID: 29018149 (View on PubMed)

Bazett M, Costa AM, Bosiljcic M, Anderson RM, Alexander MP, Wong SWY, Dhanji S, Chen JM, Pankovich J, Lam S, Sutcliffe S, Gunn H, Kalyan S, Mullins DW. Harnessing innate lung anti-cancer effector functions with a novel bacterial-derived immunotherapy. Oncoimmunology. 2017 Nov 27;7(3):e1398875. doi: 10.1080/2162402X.2017.1398875. eCollection 2018.

Reference Type BACKGROUND
PMID: 29399400 (View on PubMed)

Kalyan S, Bazett M, Sham HP, Bosiljcic M, Luk B, Dhanji S, Costa AM, Wong SWY, Netea MG, Mullins DW, Gunn H. Distinct inactivated bacterial-based immune modulators vary in their therapeutic efficacies for treating disease based on the organ site of pathology. Sci Rep. 2020 Apr 3;10(1):5901. doi: 10.1038/s41598-020-62735-z.

Reference Type BACKGROUND
PMID: 32246043 (View on PubMed)

Faraj TA, McLaughlin CL, Erridge C. Host defenses against metabolic endotoxaemia and their impact on lipopolysaccharide detection. Int Rev Immunol. 2017 May 4;36(3):125-144. doi: 10.1080/08830185.2017.1280483. Epub 2017 Mar 1.

Reference Type BACKGROUND
PMID: 28783409 (View on PubMed)

Sham HP, Bazett M, Bosiljcic M, Yang H, Luk B, Law HT, Morampudi V, Yu HB, Pankovich J, Sutcliffe S, Bressler B, Marshall JK, Fedorak RN, Chen J, Jones M, Gunn H, Kalyan S, Vallance BA. Immune Stimulation Using a Gut Microbe-Based Immunotherapy Reduces Disease Pathology and Improves Barrier Function in Ulcerative Colitis. Front Immunol. 2018 Sep 27;9:2211. doi: 10.3389/fimmu.2018.02211. eCollection 2018.

Reference Type BACKGROUND
PMID: 30319652 (View on PubMed)

Sutcliffe S, Kalyan S, Pankovich J, Chen JMH, Gluck R, Thompson D, Bosiljcic M, Bazett M, Fedorak RN, Panaccione R, Axler J, Marshall JK, Mullins DW, Kabakchiev B, McGovern DPB, Jang J, Coldman A, Vandermeirsch G, Bressler B, Gunn H. Novel Microbial-Based Immunotherapy Approach for Crohn's Disease. Front Med (Lausanne). 2019 Jul 19;6:170. doi: 10.3389/fmed.2019.00170. eCollection 2019.

Reference Type BACKGROUND
PMID: 31380382 (View on PubMed)

Hackl C, Neumann P, Gerken M, Loss M, Klinkhammer-Schalke M, Schlitt HJ. Treatment of colorectal liver metastases in Germany: a ten-year population-based analysis of 5772 cases of primary colorectal adenocarcinoma. BMC Cancer. 2014 Nov 4;14:810. doi: 10.1186/1471-2407-14-810.

Reference Type BACKGROUND
PMID: 25369977 (View on PubMed)

Manfredi S, Lepage C, Hatem C, Coatmeur O, Faivre J, Bouvier AM. Epidemiology and management of liver metastases from colorectal cancer. Ann Surg. 2006 Aug;244(2):254-9. doi: 10.1097/01.sla.0000217629.94941.cf.

Reference Type BACKGROUND
PMID: 16858188 (View on PubMed)

Engstrand J, Nilsson H, Stromberg C, Jonas E, Freedman J. Colorectal cancer liver metastases - a population-based study on incidence, management and survival. BMC Cancer. 2018 Jan 15;18(1):78. doi: 10.1186/s12885-017-3925-x.

Reference Type BACKGROUND
PMID: 29334918 (View on PubMed)

Nordlinger B, Sorbye H, Glimelius B, Poston GJ, Schlag PM, Rougier P, Bechstein WO, Primrose JN, Walpole ET, Finch-Jones M, Jaeck D, Mirza D, Parks RW, Collette L, Praet M, Bethe U, Van Cutsem E, Scheithauer W, Gruenberger T; EORTC Gastro-Intestinal Tract Cancer Group; Cancer Research UK; Arbeitsgruppe Lebermetastasen und-tumoren in der Chirurgischen Arbeitsgemeinschaft Onkologie (ALM-CAO); Australasian Gastro-Intestinal Trials Group (AGITG); Federation Francophone de Cancerologie Digestive (FFCD). Perioperative chemotherapy with FOLFOX4 and surgery versus surgery alone for resectable liver metastases from colorectal cancer (EORTC Intergroup trial 40983): a randomised controlled trial. Lancet. 2008 Mar 22;371(9617):1007-16. doi: 10.1016/S0140-6736(08)60455-9.

Reference Type BACKGROUND
PMID: 18358928 (View on PubMed)

Portier G, Elias D, Bouche O, Rougier P, Bosset JF, Saric J, Belghiti J, Piedbois P, Guimbaud R, Nordlinger B, Bugat R, Lazorthes F, Bedenne L. Multicenter randomized trial of adjuvant fluorouracil and folinic acid compared with surgery alone after resection of colorectal liver metastases: FFCD ACHBTH AURC 9002 trial. J Clin Oncol. 2006 Nov 1;24(31):4976-82. doi: 10.1200/JCO.2006.06.8353.

Reference Type BACKGROUND
PMID: 17075115 (View on PubMed)

Kanemitsu Y, Shimizu Y, Mizusawa J, Inaba Y, Hamaguchi T, Shida D, Ohue M, Komori K, Shiomi A, Shiozawa M, Watanabe J, Suto T, Kinugasa Y, Takii Y, Bando H, Kobatake T, Inomata M, Shimada Y, Katayama H, Fukuda H; JCOG Colorectal Cancer Study Group. Hepatectomy Followed by mFOLFOX6 Versus Hepatectomy Alone for Liver-Only Metastatic Colorectal Cancer (JCOG0603): A Phase II or III Randomized Controlled Trial. J Clin Oncol. 2021 Dec 1;39(34):3789-3799. doi: 10.1200/JCO.21.01032. Epub 2021 Sep 14.

Reference Type BACKGROUND
PMID: 34520230 (View on PubMed)

Oxnard GR, Paweletz CP, Kuang Y, Mach SL, O'Connell A, Messineo MM, Luke JJ, Butaney M, Kirschmeier P, Jackman DM, Janne PA. Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA. Clin Cancer Res. 2014 Mar 15;20(6):1698-1705. doi: 10.1158/1078-0432.CCR-13-2482. Epub 2014 Jan 15.

Reference Type BACKGROUND
PMID: 24429876 (View on PubMed)

Goldberg SB, Narayan A, Kole AJ, Decker RH, Teysir J, Carriero NJ, Lee A, Nemati R, Nath SK, Mane SM, Deng Y, Sukumar N, Zelterman D, Boffa DJ, Politi K, Gettinger SN, Wilson LD, Herbst RS, Patel AA. Early Assessment of Lung Cancer Immunotherapy Response via Circulating Tumor DNA. Clin Cancer Res. 2018 Apr 15;24(8):1872-1880. doi: 10.1158/1078-0432.CCR-17-1341. Epub 2018 Jan 12.

Reference Type BACKGROUND
PMID: 29330207 (View on PubMed)

Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004 Aug;240(2):205-13. doi: 10.1097/01.sla.0000133083.54934.ae.

Reference Type BACKGROUND
PMID: 15273542 (View on PubMed)

Koch M, Garden OJ, Padbury R, Rahbari NN, Adam R, Capussotti L, Fan ST, Yokoyama Y, Crawford M, Makuuchi M, Christophi C, Banting S, Brooke-Smith M, Usatoff V, Nagino M, Maddern G, Hugh TJ, Vauthey JN, Greig P, Rees M, Nimura Y, Figueras J, DeMatteo RP, Buchler MW, Weitz J. Bile leakage after hepatobiliary and pancreatic surgery: a definition and grading of severity by the International Study Group of Liver Surgery. Surgery. 2011 May;149(5):680-8. doi: 10.1016/j.surg.2010.12.002. Epub 2011 Feb 12.

Reference Type BACKGROUND
PMID: 21316725 (View on PubMed)

Rahbari NN, Garden OJ, Padbury R, Brooke-Smith M, Crawford M, Adam R, Koch M, Makuuchi M, Dematteo RP, Christophi C, Banting S, Usatoff V, Nagino M, Maddern G, Hugh TJ, Vauthey JN, Greig P, Rees M, Yokoyama Y, Fan ST, Nimura Y, Figueras J, Capussotti L, Buchler MW, Weitz J. Posthepatectomy liver failure: a definition and grading by the International Study Group of Liver Surgery (ISGLS). Surgery. 2011 May;149(5):713-24. doi: 10.1016/j.surg.2010.10.001. Epub 2011 Jan 14.

Reference Type BACKGROUND
PMID: 21236455 (View on PubMed)

Leslie K, Troedel S, Irwin K, Pearce F, Ugoni A, Gillies R, Pemberton E, Dharmage S. Quality of recovery from anesthesia in neurosurgical patients. Anesthesiology. 2003 Nov;99(5):1158-65. doi: 10.1097/00000542-200311000-00024.

Reference Type BACKGROUND
PMID: 14576554 (View on PubMed)

Myles PS, Weitkamp B, Jones K, Melick J, Hensen S. Validity and reliability of a postoperative quality of recovery score: the QoR-40. Br J Anaesth. 2000 Jan;84(1):11-5. doi: 10.1093/oxfordjournals.bja.a013366.

Reference Type BACKGROUND
PMID: 10740540 (View on PubMed)

Shida D, Wakamatsu K, Tanaka Y, Yoshimura A, Kawaguchi M, Miyamoto S, Tagawa K. The postoperative patient-reported quality of recovery in colorectal cancer patients under enhanced recovery after surgery using QoR-40. BMC Cancer. 2015 Oct 26;15:799. doi: 10.1186/s12885-015-1799-3.

Reference Type BACKGROUND
PMID: 26503497 (View on PubMed)

Peng LH, Wang WJ, Chen J, Jin JY, Min S, Qin PP. Implementation of the pre-operative rehabilitation recovery protocol and its effect on the quality of recovery after colorectal surgeries. Chin Med J (Engl). 2021 Nov 3;134(23):2865-2873. doi: 10.1097/CM9.0000000000001709.

Reference Type BACKGROUND
PMID: 34732661 (View on PubMed)

Lee JH, Kim D, Seo D, Son JS, Kim DC. Validity and reliability of the Korean version of the Quality of Recovery-40 questionnaire. Korean J Anesthesiol. 2018 Dec;71(6):467-475. doi: 10.4097/kja.d.18.27188. Epub 2018 Apr 24.

Reference Type BACKGROUND
PMID: 29684992 (View on PubMed)

Tanaka Y, Wakita T, Fukuhara S, Nishiwada M, Inoue S, Kawaguchi M, Furuya H. Validation of the Japanese version of the quality of recovery score QoR-40. J Anesth. 2011 Aug;25(4):509-15. doi: 10.1007/s00540-011-1151-2. Epub 2011 May 31.

Reference Type BACKGROUND
PMID: 21626452 (View on PubMed)

McMillan DC, Crozier JE, Canna K, Angerson WJ, McArdle CS. Evaluation of an inflammation-based prognostic score (GPS) in patients undergoing resection for colon and rectal cancer. Int J Colorectal Dis. 2007 Aug;22(8):881-6. doi: 10.1007/s00384-006-0259-6. Epub 2007 Jan 24.

Reference Type BACKGROUND
PMID: 17245566 (View on PubMed)

Shrotriya S, Walsh D, Bennani-Baiti N, Thomas S, Lorton C. C-Reactive Protein Is an Important Biomarker for Prognosis Tumor Recurrence and Treatment Response in Adult Solid Tumors: A Systematic Review. PLoS One. 2015 Dec 30;10(12):e0143080. doi: 10.1371/journal.pone.0143080. eCollection 2015.

Reference Type BACKGROUND
PMID: 26717416 (View on PubMed)

Fruhling P, Hellberg K, Ejder P, Stromberg C, Urdzik J, Isaksson B. The prognostic value of C-reactive protein and albumin in patients undergoing resection of colorectal liver metastases. A retrospective cohort study. HPB (Oxford). 2021 Jun;23(6):970-978. doi: 10.1016/j.hpb.2020.10.019. Epub 2020 Nov 16.

Reference Type BACKGROUND
PMID: 33214053 (View on PubMed)

Punt CJ, Buyse M, Kohne CH, Hohenberger P, Labianca R, Schmoll HJ, Pahlman L, Sobrero A, Douillard JY. Endpoints in adjuvant treatment trials: a systematic review of the literature in colon cancer and proposed definitions for future trials. J Natl Cancer Inst. 2007 Jul 4;99(13):998-1003. doi: 10.1093/jnci/djm024. Epub 2007 Jun 27.

Reference Type BACKGROUND
PMID: 17596575 (View on PubMed)

Karanicolas PJ, Farrokhyar F, Bhandari M. Practical tips for surgical research: blinding: who, what, when, why, how? Can J Surg. 2010 Oct;53(5):345-8. No abstract available.

Reference Type BACKGROUND
PMID: 20858381 (View on PubMed)

Tsai MS, Su YH, Ho MC, Liang JT, Chen TP, Lai HS, Lee PH. Clinicopathological features and prognosis in resectable synchronous and metachronous colorectal liver metastasis. Ann Surg Oncol. 2007 Feb;14(2):786-94. doi: 10.1245/s10434-006-9215-5. Epub 2006 Nov 14.

Reference Type BACKGROUND
PMID: 17103254 (View on PubMed)

Lochan R, White SA, Manas DM. Liver resection for colorectal liver metastasis. Surg Oncol. 2007 Jul;16(1):33-45. doi: 10.1016/j.suronc.2007.04.010. Epub 2007 Jun 4.

Reference Type BACKGROUND
PMID: 17544654 (View on PubMed)

Bismuth H, Chiche L. Surgery of hepatic tumors. Prog Liver Dis. 1993;11:269-85. No abstract available.

Reference Type BACKGROUND
PMID: 8272515 (View on PubMed)

Soules MR, Sherman S, Parrott E, Rebar R, Santoro N, Utian W, Woods N. Executive summary: Stages of Reproductive Aging Workshop (STRAW). Climacteric. 2001 Dec;4(4):267-72.

Reference Type BACKGROUND
PMID: 11770182 (View on PubMed)

Provided Documents

Download supplemental materials such as informed consent forms, study protocols, or participant manuals.

Document Type: Study Protocol and Statistical Analysis Plan

View Document

Related Links

Access external resources that provide additional context or updates about the study.

http://www.ncbi.nlm.nih.gov/books/NBK6868/

The Multiple Organ Dysfunction Syndrome.

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

4023

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.