A Trial to Determine the Safety and Tolerability of Transplanted Stem Cell Derived Dopamine Neurons to the Brains of Individuals With Parkinson's Disease
NCT ID: NCT05635409
Last Updated: 2025-12-17
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
ACTIVE_NOT_RECRUITING
PHASE1
8 participants
INTERVENTIONAL
2022-11-30
2027-11-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
In this trial, the investigators will transplant a new stem cell therapy, called the STEM-PD product, into the area of the brain affected in people with PD. These stem cells can develop into many different cell types, including dopamine-producing nerve cells. The investigators will transplant the stem cells using a device that has been previously used for similar transplants in Lund. This is the first time that the STEM-PD product will be given to humans.
The trial aims to assess whether the STEM-PD product is safe to use in people with PD. The investigators will also be looking for preliminary signs of efficacy.
The trial will recruit participants with PD from the UK and Sweden. Eight participants will undergo the STEM-PD product transplant. Participants will receive a single dose of the STEM-PD product. Participants will attend for 25 visits primarily at their local recruiting hospital. For participants from the UK, some of the imaging will be performed at Invicro (London), and the surgery (including some visits before and after) and some imaging will be performed in Lund. All participants will be followed up for 36 months following surgery
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NON_RANDOMIZED
SEQUENTIAL
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Dose 1
The starting dose of this trial is selected as a dose of cells that is likely to be the minimal therapeutic dose, i.e. 100,000 surviving DA neurons per putamen, obtained by transplanting 3.54 million STEM-PD cells per putamen.
STEM-PD
STEM-PD is a cryopreserved cell product, consisting of ventral midbrain dopaminergic progenitor cells derived from the clinical-grade hESC line RC17. STEM-PD will be administered using a non-CE marked class III neurosurgical medical device, the Rehncrona-Legradi device, bilaterally in one surgical session to the putamen.
Dose 2
To ensure that the investigators are not using a potentially suboptimal cell dose, the investigators also plan to test a higher dose, which is double the dose of dose 1, i.e., 200,000 surviving DA neurons (= 7.08 million transplanted STEM-PD cells) per putamen.
The Data and Safety Monitoring Board (DSMB) for the trial will make a recommendation for the dosing once participants 1-4 have been dosed and data is available for imaging and clinical measurements, as well as safety reports, 6 months after the last patient has been grafted. The DSMB can recommend either to: i) remain at dose 1; ii) proceed to dose 2; or, iii) wait longer to collect more data. The final decision will be made by the clinical sub-group of the Trial Management Group, after receiving confirmation of the DSMB's recommendation.
STEM-PD
STEM-PD is a cryopreserved cell product, consisting of ventral midbrain dopaminergic progenitor cells derived from the clinical-grade hESC line RC17. STEM-PD will be administered using a non-CE marked class III neurosurgical medical device, the Rehncrona-Legradi device, bilaterally in one surgical session to the putamen.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
STEM-PD
STEM-PD is a cryopreserved cell product, consisting of ventral midbrain dopaminergic progenitor cells derived from the clinical-grade hESC line RC17. STEM-PD will be administered using a non-CE marked class III neurosurgical medical device, the Rehncrona-Legradi device, bilaterally in one surgical session to the putamen.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Diagnosed with PD as defined using Queens Square Brain Bank criteria
* Moderate disease as defined by having Hoehn and Yahr stage 2-3 in OFF state
* Disease duration \> 10 years
* Male or female, aged between 50 and 75 years (inclusive)
* Have a significant response to dopamine therapies as judged by the PI or other delegated clinician
* Have symptoms that are not appropriately controlled by existing oral anti-PD medications, as judged by the PI or other delegated clinician
* Ability to travel to Lund for surgery
* Followed up for at least 12 months prior to inclusion in this trial in the TransEUro observational study
* Be fluent in English/Swedish to enable completion of questionnaires as assessed by the PI or other delegated clinician at Cambridge/Lund, respectively
* Be approved by the TMG clinical sub-group for trial participation
Exclusion Criteria
* Significant drug induced dyskinesias as defined by a score of \> 2 in the Abnormal Involuntary Movement Scale (AIMS) dyskinesias rating scale, in any body part in the ON state
* Ongoing major medical or psychiatric disorders, including depression (MADRS \> 20) and psychosis, that make participation unsuitable, as judged by the PI or other delegated clinician
* Any contraindication to neurosurgery
* Unable to be imaged using MRI
* Extensive ventral striatal loss or normal findings on F-DOPA PET at screening
* Significant cognitive impairment indicative of an incipient dementia/established dementia or values consistent with MoCA score of ≤ 24
* Unable to perform normal copying of interlocking pentagons and/or a semantic fluency score for naming animals of less than 20 over 90 seconds
* Other concomitant treatment with neuroleptics (including atypical neuroleptics) and/or cholinesterase inhibitors
* Previous neurosurgery to the brain, or cell or organ transplantation, or recipient of repeated blood transfusions
* Any contraindication to immunosuppressive therapy, prophylactic antibiotics, and/or osteoporosis prophylaxis (refer to STEM-PD Trial Immunosuppressant Manual)
* High levels of pre-formed specific anti-HLA antibodies to the cell product
* Severely reduced TPMT activity (less than half of the lower normal TPMT activity level)
* History of documented severe/significant allergy requiring treatment
* Female who is pregnant or breastfeeding
* Received an investigational drug (including investigational vaccines) or used an invasive investigational medical device within 4 weeks of the screening visit, or is currently enrolled in an interventional investigational trial
* Female of childbearing potential or male unwilling to follow contraception requirements (see protocol section 12.15)
* Any other condition which, in the opinion of the investigator, makes the patient inappropriate for entry into the trial
50 Years
75 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Lund University
OTHER
Cambridge University Hospitals NHS Foundation Trust
OTHER
University of Cambridge
OTHER
Region Skane
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Roger Barker
Role: PRINCIPAL_INVESTIGATOR
Cambridge University Hospitals NHS Foundation Trust & University of Cambridge
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Region Skåne - Skåne University Hospital
Lund, , Sweden
Cambridge University Hospitals NHS Foundation Trust
Cambridge, Cambridgeshire, United Kingdom
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Barker RA; TRANSEURO consortium. Designing stem-cell-based dopamine cell replacement trials for Parkinson's disease. Nat Med. 2019 Jul;25(7):1045-1053. doi: 10.1038/s41591-019-0507-2. Epub 2019 Jul 1.
Barker RA, Foltynie T. The future challenges in Parkinson's disease. J Neurol. 2004 Mar;251(3):361-5. doi: 10.1007/s00415-004-0320-8. No abstract available.
Barker RA, Parmar M, Studer L, Takahashi J. Human Trials of Stem Cell-Derived Dopamine Neurons for Parkinson's Disease: Dawn of a New Era. Cell Stem Cell. 2017 Nov 2;21(5):569-573. doi: 10.1016/j.stem.2017.09.014.
Adler AF, Cardoso T, Nolbrant S, Mattsson B, Hoban DB, Jarl U, Wahlestedt JN, Grealish S, Bjorklund A, Parmar M. hESC-Derived Dopaminergic Transplants Integrate into Basal Ganglia Circuitry in a Preclinical Model of Parkinson's Disease. Cell Rep. 2019 Sep 24;28(13):3462-3473.e5. doi: 10.1016/j.celrep.2019.08.058.
Aldrin-Kirk P, Heuer A, Wang G, Mattsson B, Lundblad M, Parmar M, Bjorklund T. DREADD Modulation of Transplanted DA Neurons Reveals a Novel Parkinsonian Dyskinesia Mechanism Mediated by the Serotonin 5-HT6 Receptor. Neuron. 2016 Jun 1;90(5):955-68. doi: 10.1016/j.neuron.2016.04.017. Epub 2016 May 5.
Barker RA, Barrett J, Mason SL, Bjorklund A. Fetal dopaminergic transplantation trials and the future of neural grafting in Parkinson's disease. Lancet Neurol. 2013 Jan;12(1):84-91. doi: 10.1016/S1474-4422(12)70295-8.
Braak H, Bohl JR, Muller CM, Rub U, de Vos RA, Del Tredici K. Stanley Fahn Lecture 2005: The staging procedure for the inclusion body pathology associated with sporadic Parkinson's disease reconsidered. Mov Disord. 2006 Dec;21(12):2042-51. doi: 10.1002/mds.21065.
Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K. Stages in the development of Parkinson's disease-related pathology. Cell Tissue Res. 2004 Oct;318(1):121-34. doi: 10.1007/s00441-004-0956-9. Epub 2004 Aug 24.
Brundin P, Pogarell O, Hagell P, Piccini P, Widner H, Schrag A, Kupsch A, Crabb L, Odin P, Gustavii B, Bjorklund A, Brooks DJ, Marsden CD, Oertel WH, Quinn NP, Rehncrona S, Lindvall O. Bilateral caudate and putamen grafts of embryonic mesencephalic tissue treated with lazaroids in Parkinson's disease. Brain. 2000 Jul;123 ( Pt 7):1380-90. doi: 10.1093/brain/123.7.1380.
Cardoso T, Adler AF, Mattsson B, Hoban DB, Nolbrant S, Wahlestedt JN, Kirkeby A, Grealish S, Bjorklund A, Parmar M. Target-specific forebrain projections and appropriate synaptic inputs of hESC-derived dopamine neurons grafted to the midbrain of parkinsonian rats. J Comp Neurol. 2018 Sep 1;526(13):2133-2146. doi: 10.1002/cne.24500. Epub 2018 Jul 31.
Defer GL, Geny C, Ricolfi F, Fenelon G, Monfort JC, Remy P, Villafane G, Jeny R, Samson Y, Keravel Y, Gaston A, Degos JD, Peschanski M, Cesaro P, Nguyen JP. Long-term outcome of unilaterally transplanted parkinsonian patients. I. Clinical approach. Brain. 1996 Feb;119 ( Pt 1):41-50. doi: 10.1093/brain/119.1.41.
Evans JR, Barker RA. Neurotrophic factors as a therapeutic target for Parkinson's disease. Expert Opin Ther Targets. 2008 Apr;12(4):437-47. doi: 10.1517/14728222.12.4.437.
Freed CR, Breeze RE, Rosenberg NL, Schneck SA, Kriek E, Qi JX, Lone T, Zhang YB, Snyder JA, Wells TH, et al. Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson's disease. N Engl J Med. 1992 Nov 26;327(22):1549-55. doi: 10.1056/NEJM199211263272202.
Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, Dillon S, Winfield H, Culver S, Trojanowski JQ, Eidelberg D, Fahn S. Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N Engl J Med. 2001 Mar 8;344(10):710-9. doi: 10.1056/NEJM200103083441002.
Grealish S, Heuer A, Cardoso T, Kirkeby A, Jonsson M, Johansson J, Bjorklund A, Jakobsson J, Parmar M. Monosynaptic Tracing using Modified Rabies Virus Reveals Early and Extensive Circuit Integration of Human Embryonic Stem Cell-Derived Neurons. Stem Cell Reports. 2015 Jun 9;4(6):975-83. doi: 10.1016/j.stemcr.2015.04.011. Epub 2015 May 21.
Hagell P, Piccini P, Bjorklund A, Brundin P, Rehncrona S, Widner H, Crabb L, Pavese N, Oertel WH, Quinn N, Brooks DJ, Lindvall O. Dyskinesias following neural transplantation in Parkinson's disease. Nat Neurosci. 2002 Jul;5(7):627-8. doi: 10.1038/nn863.
Hagell P, Schrag A, Piccini P, Jahanshahi M, Brown R, Rehncrona S, Widner H, Brundin P, Rothwell JC, Odin P, Wenning GK, Morrish P, Gustavii B, Bjorklund A, Brooks DJ, Marsden CD, Quinn NP, Lindvall O. Sequential bilateral transplantation in Parkinson's disease: effects of the second graft. Brain. 1999 Jun;122 ( Pt 6):1121-32. doi: 10.1093/brain/122.6.1121.
Hauser RA, Freeman TB, Snow BJ, Nauert M, Gauger L, Kordower JH, Olanow CW. Long-term evaluation of bilateral fetal nigral transplantation in Parkinson disease. Arch Neurol. 1999 Feb;56(2):179-87. doi: 10.1001/archneur.56.2.179.
Heuer A, Kirkeby A, Pfisterer U, Jonsson ME, Parmar M. hESC-derived neural progenitors prevent xenograft rejection through neonatal desensitisation. Exp Neurol. 2016 Aug;282:78-85. doi: 10.1016/j.expneurol.2016.05.027. Epub 2016 May 25.
Hoban DB, Shrigley S, Mattsson B, Breger LS, Jarl U, Cardoso T, Nelander Wahlestedt J, Luk KC, Bjorklund A, Parmar M. Impact of alpha-synuclein pathology on transplanted hESC-derived dopaminergic neurons in a humanized alpha-synuclein rat model of PD. Proc Natl Acad Sci U S A. 2020 Jun 30;117(26):15209-15220. doi: 10.1073/pnas.2001305117. Epub 2020 Jun 15.
Kefalopoulou Z, Politis M, Piccini P, Mencacci N, Bhatia K, Jahanshahi M, Widner H, Rehncrona S, Brundin P, Bjorklund A, Lindvall O, Limousin P, Quinn N, Foltynie T. Long-term clinical outcome of fetal cell transplantation for Parkinson disease: two case reports. JAMA Neurol. 2014 Jan;71(1):83-7. doi: 10.1001/jamaneurol.2013.4749.
Kirkeby A, Grealish S, Wolf DA, Nelander J, Wood J, Lundblad M, Lindvall O, Parmar M. Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Rep. 2012 Jun 28;1(6):703-14. doi: 10.1016/j.celrep.2012.04.009. Epub 2012 May 26.
Kirkeby A, Nolbrant S, Tiklova K, Heuer A, Kee N, Cardoso T, Ottosson DR, Lelos MJ, Rifes P, Dunnett SB, Grealish S, Perlmann T, Parmar M. Predictive Markers Guide Differentiation to Improve Graft Outcome in Clinical Translation of hESC-Based Therapy for Parkinson's Disease. Cell Stem Cell. 2017 Jan 5;20(1):135-148. doi: 10.1016/j.stem.2016.09.004. Epub 2016 Oct 27.
Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, Carrillo-Reid L, Auyeung G, Antonacci C, Buch A, Yang L, Beal MF, Surmeier DJ, Kordower JH, Tabar V, Studer L. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature. 2011 Nov 6;480(7378):547-51. doi: 10.1038/nature10648.
Lang AE, Lozano AM. Parkinson's disease. First of two parts. N Engl J Med. 1998 Oct 8;339(15):1044-53. doi: 10.1056/NEJM199810083391506. No abstract available.
Lang AE, Lozano AM. Parkinson's disease. Second of two parts. N Engl J Med. 1998 Oct 15;339(16):1130-43. doi: 10.1056/NEJM199810153391607.
Lehnen D, Barral S, Cardoso T, Grealish S, Heuer A, Smiyakin A, Kirkeby A, Kollet J, Cremer H, Parmar M, Bosio A, Knobel S. IAP-Based Cell Sorting Results in Homogeneous Transplantable Dopaminergic Precursor Cells Derived from Human Pluripotent Stem Cells. Stem Cell Reports. 2017 Oct 10;9(4):1207-1220. doi: 10.1016/j.stemcr.2017.08.016. Epub 2017 Sep 21.
Lewis SJ, Caldwell MA, Barker RA. Modern therapeutic approaches in Parkinson's disease. Expert Rev Mol Med. 2003 Mar 28;5(10):1-20. doi: 10.1017/S1462399403006008.
Li JY, Englund E, Holton JL, Soulet D, Hagell P, Lees AJ, Lashley T, Quinn NP, Rehncrona S, Bjorklund A, Widner H, Revesz T, Lindvall O, Brundin P. Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nat Med. 2008 May;14(5):501-3. doi: 10.1038/nm1746. Epub 2008 Apr 6.
Li JY, Englund E, Widner H, Rehncrona S, Bjorklund A, Lindvall O, Brundin P. Characterization of Lewy body pathology in 12- and 16-year-old intrastriatal mesencephalic grafts surviving in a patient with Parkinson's disease. Mov Disord. 2010 Jun 15;25(8):1091-6. doi: 10.1002/mds.23012.
Li W, Englund E, Widner H, Mattsson B, van Westen D, Latt J, Rehncrona S, Brundin P, Bjorklund A, Lindvall O, Li JY. Extensive graft-derived dopaminergic innervation is maintained 24 years after transplantation in the degenerating parkinsonian brain. Proc Natl Acad Sci U S A. 2016 Jun 7;113(23):6544-9. doi: 10.1073/pnas.1605245113. Epub 2016 May 2.
Lindvall O, Rehncrona S, Brundin P, Gustavii B, Astedt B, Widner H, Lindholm T, Bjorklund A, Leenders KL, Rothwell JC, Frackowiak R, Marsden D, Johnels B, Steg G, Freedman R, Hoffer BJ, Seiger A, Bygdeman M, Stromberg I, Olson L. Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinson's disease. A detailed account of methodology and a 6-month follow-up. Arch Neurol. 1989 Jun;46(6):615-31. doi: 10.1001/archneur.1989.00520420033021.
Mendez I, Dagher A, Hong M, Gaudet P, Weerasinghe S, McAlister V, King D, Desrosiers J, Darvesh S, Acorn T, Robertson H. Simultaneous intrastriatal and intranigral fetal dopaminergic grafts in patients with Parkinson disease: a pilot study. Report of three cases. J Neurosurg. 2002 Mar;96(3):589-96. doi: 10.3171/jns.2002.96.3.0589.
Nolbrant S, Heuer A, Parmar M, Kirkeby A. Generation of high-purity human ventral midbrain dopaminergic progenitors for in vitro maturation and intracerebral transplantation. Nat Protoc. 2017 Sep;12(9):1962-1979. doi: 10.1038/nprot.2017.078. Epub 2017 Aug 31.
Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, Shannon KM, Nauert GM, Perl DP, Godbold J, Freeman TB. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease. Ann Neurol. 2003 Sep;54(3):403-14. doi: 10.1002/ana.10720.
Palfi S, Gurruchaga JM, Ralph GS, Lepetit H, Lavisse S, Buttery PC, Watts C, Miskin J, Kelleher M, Deeley S, Iwamuro H, Lefaucheur JP, Thiriez C, Fenelon G, Lucas C, Brugieres P, Gabriel I, Abhay K, Drouot X, Tani N, Kas A, Ghaleh B, Le Corvoisier P, Dolphin P, Breen DP, Mason S, Guzman NV, Mazarakis ND, Radcliffe PA, Harrop R, Kingsman SM, Rascol O, Naylor S, Barker RA, Hantraye P, Remy P, Cesaro P, Mitrophanous KA. Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson's disease: a dose escalation, open-label, phase 1/2 trial. Lancet. 2014 Mar 29;383(9923):1138-46. doi: 10.1016/S0140-6736(13)61939-X. Epub 2014 Jan 10.
Schade S, Mollenhauer B, Trenkwalder C. Levodopa Equivalent Dose Conversion Factors: An Updated Proposal Including Opicapone and Safinamide. Mov Disord Clin Pract. 2020 Mar 16;7(3):343-345. doi: 10.1002/mdc3.12921. eCollection 2020 Apr. No abstract available.
Schuepbach WM, Rau J, Knudsen K, Volkmann J, Krack P, Timmermann L, Halbig TD, Hesekamp H, Navarro SM, Meier N, Falk D, Mehdorn M, Paschen S, Maarouf M, Barbe MT, Fink GR, Kupsch A, Gruber D, Schneider GH, Seigneuret E, Kistner A, Chaynes P, Ory-Magne F, Brefel Courbon C, Vesper J, Schnitzler A, Wojtecki L, Houeto JL, Bataille B, Maltete D, Damier P, Raoul S, Sixel-Doering F, Hellwig D, Gharabaghi A, Kruger R, Pinsker MO, Amtage F, Regis JM, Witjas T, Thobois S, Mertens P, Kloss M, Hartmann A, Oertel WH, Post B, Speelman H, Agid Y, Schade-Brittinger C, Deuschl G; EARLYSTIM Study Group. Neurostimulation for Parkinson's disease with early motor complications. N Engl J Med. 2013 Feb 14;368(7):610-22. doi: 10.1056/NEJMoa1205158.
Schupbach WM, Maltete D, Houeto JL, du Montcel ST, Mallet L, Welter ML, Gargiulo M, Behar C, Bonnet AM, Czernecki V, Pidoux B, Navarro S, Dormont D, Cornu P, Agid Y. Neurosurgery at an earlier stage of Parkinson disease: a randomized, controlled trial. Neurology. 2007 Jan 23;68(4):267-71. doi: 10.1212/01.wnl.0000250253.03919.fb. Epub 2006 Dec 6.
Tiklova K, Nolbrant S, Fiorenzano A, Bjorklund AK, Sharma Y, Heuer A, Gillberg L, Hoban DB, Cardoso T, Adler AF, Birtele M, Lunden-Miguel H, Volakakis N, Kirkeby A, Perlmann T, Parmar M. Single cell transcriptomics identifies stem cell-derived graft composition in a model of Parkinson's disease. Nat Commun. 2020 May 15;11(1):2434. doi: 10.1038/s41467-020-16225-5.
Voon V, Krack P, Lang AE, Lozano AM, Dujardin K, Schupbach M, D'Ambrosia J, Thobois S, Tamma F, Herzog J, Speelman JD, Samanta J, Kubu C, Rossignol H, Poon YY, Saint-Cyr JA, Ardouin C, Moro E. A multicentre study on suicide outcomes following subthalamic stimulation for Parkinson's disease. Brain. 2008 Oct;131(Pt 10):2720-8. doi: 10.1093/brain/awn214.
Wider C, Pollo C, Bloch J, Burkhard PR, Vingerhoets FJ. Long-term outcome of 50 consecutive Parkinson's disease patients treated with subthalamic deep brain stimulation. Parkinsonism Relat Disord. 2008;14(2):114-9. doi: 10.1016/j.parkreldis.2007.06.012. Epub 2007 Sep 5.
Wijeyekoon R, Barker RA. Cell replacement therapy for Parkinson's disease. Biochim Biophys Acta. 2009 Jul;1792(7):688-702. doi: 10.1016/j.bbadis.2008.10.007. Epub 2008 Oct 25.
Witt K, Daniels C, Reiff J, Krack P, Volkmann J, Pinsker MO, Krause M, Tronnier V, Kloss M, Schnitzler A, Wojtecki L, Botzel K, Danek A, Hilker R, Sturm V, Kupsch A, Karner E, Deuschl G. Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson's disease: a randomised, multicentre study. Lancet Neurol. 2008 Jul;7(7):605-14. doi: 10.1016/S1474-4422(08)70114-5. Epub 2008 Jun 4.
Lansing AE, Ivnik RJ, Cullum CM, Randolph C. An empirically derived short form of the Boston naming test. Arch Clin Neuropsychol. 1999 Aug;14(6):481-7.
Related Links
Access external resources that provide additional context or updates about the study.
World's first clinical trial to treat Parkinson's disease with stem cells
Surgical instrument for implantation
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
2021-001366-38
Identifier Type: EUDRACT_NUMBER
Identifier Source: secondary_id
CCTU0263
Identifier Type: -
Identifier Source: org_study_id