Research on Effectiveness and Safety of the Treatment, Hyperthermic Intraperitoneal Chemotherapy Combined With Tislelizumab and Targeted Therapy, That is Used for High-risk Hepatocellular Carcinoma After R0 Resection
NCT ID: NCT05546619
Last Updated: 2022-09-21
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
NA
30 participants
INTERVENTIONAL
2022-08-01
2025-07-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Neoadjuvant HAIC and PD-1 Plus Adjuvant PD-1 for High-risk Recurrent HCC
NCT06467799
A Study to Evaluate Tislelizumab Combined With Sitravatinib as Adjuvant Therapy in Participants With HCC at High Risk of Recurrence After Curative Resection
NCT05407519
HAIC Combined With Tislelizumab and Apatinib for Unresectable Intrahepatic Cholangiocarcinoma
NCT05290116
TACE Combined With Tyrosine Kinase Inhibitors and Tislelizumab in Unresectable Hepatocellular Carcinoma
NCT06232759
Exploring the Efficacy and Safety of Tislelizumab in Combination With S-1 in the Treatment of Patients With Postoperative Recurrent High-risk Intrahepatic Cholangiocarcinoma
NCT06664021
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Treating with a Design Protocol
HIPEC+tislelizumab + targeted therapy
Patients with open liver lobe/segment resection, tumor excision, lymph node dissection will receive medication.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
HIPEC+tislelizumab + targeted therapy
Patients with open liver lobe/segment resection, tumor excision, lymph node dissection will receive medication.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
(2)18-70 years (3) Liver function: Child-Pugh A、B (4) Patients voluntarily receive treatment with this program.
18 Years
70 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Sulai Liu
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Sulai Liu
Dc.
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Hunan Provincial People's Hospital(The First Affiliated Hospital of Hunan Normal University)
Changsha, Hunan, China
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Gentile D, Donadon M, Lleo A, Aghemo A, Roncalli M, di Tommaso L, Torzilli G. Surgical Treatment of Hepatocholangiocarcinoma: A Systematic Review. Liver Cancer. 2020 Jan;9(1):15-27. doi: 10.1159/000503719. Epub 2019 Nov 1.
Foerster F, Gairing SJ, Muller L, Galle PR. NAFLD-driven HCC: Safety and efficacy of current and emerging treatment options. J Hepatol. 2022 Feb;76(2):446-457. doi: 10.1016/j.jhep.2021.09.007. Epub 2021 Sep 20.
Satriano L, Lewinska M, Rodrigues PM, Banales JM, Andersen JB. Metabolic rearrangements in primary liver cancers: cause and consequences. Nat Rev Gastroenterol Hepatol. 2019 Dec;16(12):748-766. doi: 10.1038/s41575-019-0217-8. Epub 2019 Oct 30.
Ding X, He M, Chan AWH, Song QX, Sze SC, Chen H, Man MKH, Man K, Chan SL, Lai PBS, Wang X, Wong N. Genomic and Epigenomic Features of Primary and Recurrent Hepatocellular Carcinomas. Gastroenterology. 2020 May 16:S0016-5085(20)30659-4. doi: 10.1053/j.gastro.2019.09.056. Online ahead of print.
Li X, Ramadori P, Pfister D, Seehawer M, Zender L, Heikenwalder M. The immunological and metabolic landscape in primary and metastatic liver cancer. Nat Rev Cancer. 2021 Sep;21(9):541-557. doi: 10.1038/s41568-021-00383-9. Epub 2021 Jul 29.
Wang H, Lu Z, Zhao X. Tumorigenesis, diagnosis, and therapeutic potential of exosomes in liver cancer. J Hematol Oncol. 2019 Dec 9;12(1):133. doi: 10.1186/s13045-019-0806-6.
Sharma SA, Kowgier M, Hansen BE, Brouwer WP, Maan R, Wong D, Shah H, Khalili K, Yim C, Heathcote EJ, Janssen HLA, Sherman M, Hirschfield GM, Feld JJ. Toronto HCC risk index: A validated scoring system to predict 10-year risk of HCC in patients with cirrhosis. J Hepatol. 2017 Aug 24:S0168-8278(17)32248-1. doi: 10.1016/j.jhep.2017.07.033. Online ahead of print.
Bhatt A, de Hingh I, Van Der Speeten K, Hubner M, Deraco M, Bakrin N, Villeneuve L, Kusamura S, Glehen O. HIPEC Methodology and Regimens: The Need for an Expert Consensus. Ann Surg Oncol. 2021 Dec;28(13):9098-9113. doi: 10.1245/s10434-021-10193-w. Epub 2021 Jun 17.
Pameijer CR. HIPEC Trials and the US: A Review and Call to Action. Ann Surg Oncol. 2022 Feb;29(2):866-872. doi: 10.1245/s10434-021-10769-6. Epub 2021 Oct 1. No abstract available.
Blumenthaler AN, Allen CJ, Ikoma N, Blum M, Das P, Minsky BD, Mansfield PF, Ajani JA, Badgwell BD. Laparoscopic HIPEC for Low-Volume Peritoneal Metastasis in Gastric and Gastroesophageal Adenocarcinoma. Ann Surg Oncol. 2020 Dec;27(13):5047-5056. doi: 10.1245/s10434-020-08968-8. Epub 2020 Jul 31.
Klempner SJ, Ryan DP. HIPEC for colorectal peritoneal metastases. Lancet Oncol. 2021 Feb;22(2):162-164. doi: 10.1016/S1470-2045(20)30693-8. Epub 2021 Jan 18. No abstract available.
van Stein RM, Aalbers AGJ, Sonke GS, van Driel WJ. Hyperthermic Intraperitoneal Chemotherapy for Ovarian and Colorectal Cancer: A Review. JAMA Oncol. 2021 Aug 1;7(8):1231-1238. doi: 10.1001/jamaoncol.2021.0580.
Strijker D, Meijerink WJHJ, Bremers AJA, de Reuver P, van Laarhoven CJHM, van den Heuvel B. Prehabilitation to improve postoperative outcomes in patients with peritoneal carcinomatosis undergoing hyperthermic intraperitoneal chemotherapy (HIPEC): A scoping review. Eur J Surg Oncol. 2022 Mar;48(3):657-665. doi: 10.1016/j.ejso.2021.10.006. Epub 2021 Oct 20.
Gulmez S, Polat E, Duman U, Senger AS, Uzun O, Ozduman O, Oz A, Subasi IE, Duman M. Hepatic bridge and round ligament of the liver during cytoreductive surgery: a retrospective cohort. Langenbecks Arch Surg. 2022 May;407(3):1201-1207. doi: 10.1007/s00423-021-02386-4. Epub 2021 Nov 29.
Liu S, Zhong Z, Yi W, Yu Z, Zhang Z, Xia G, Jiang B, Song Y, Peng C. Effect of Hyperthermic Intraperitoneal Perfusion Chemotherapy Combined with Radical Surgery and Capecitabine on Stage III Gallbladder Cancer. Can J Gastroenterol Hepatol. 2021 Oct 8;2021:4006786. doi: 10.1155/2021/4006786. eCollection 2021.
Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov. 2019 Mar;18(3):175-196. doi: 10.1038/s41573-018-0006-z.
O'Donnell JS, Teng MWL, Smyth MJ. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol. 2019 Mar;16(3):151-167. doi: 10.1038/s41571-018-0142-8.
Marabelle A, Tselikas L, de Baere T, Houot R. Intratumoral immunotherapy: using the tumor as the remedy. Ann Oncol. 2017 Dec 1;28(suppl_12):xii33-xii43. doi: 10.1093/annonc/mdx683.
Ziogas IA, Evangeliou AP, Giannis D, Hayat MH, Mylonas KS, Tohme S, Geller DA, Elias N, Goyal L, Tsoulfas G. The Role of Immunotherapy in Hepatocellular Carcinoma: A Systematic Review and Pooled Analysis of 2,402 Patients. Oncologist. 2021 Jun;26(6):e1036-e1049. doi: 10.1002/onco.13638. Epub 2021 Jan 2.
Osarogiagbon RU. Tislelizumab-A Promising New Option for Enhancing Chemotherapy Benefit in Treatment for Advanced Squamous Cell Lung Cancer. JAMA Oncol. 2021 May 1;7(5):717-719. doi: 10.1001/jamaoncol.2021.0262. No abstract available.
Lee A, Keam SJ. Tislelizumab: First Approval. Drugs. 2020 Apr;80(6):617-624. doi: 10.1007/s40265-020-01286-z.
Yi M, Zheng X, Niu M, Zhu S, Ge H, Wu K. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol Cancer. 2022 Jan 21;21(1):28. doi: 10.1186/s12943-021-01489-2.
Shen L, Guo J, Zhang Q, Pan H, Yuan Y, Bai Y, Liu T, Zhou Q, Zhao J, Shu Y, Huang X, Wang S, Wang J, Zhou A, Ye D, Sun T, Gao Y, Yang S, Wang Z, Li J, Wu YL. Tislelizumab in Chinese patients with advanced solid tumors: an open-label, non-comparative, phase 1/2 study. J Immunother Cancer. 2020 Jun;8(1):e000437. doi: 10.1136/jitc-2019-000437.
Kissel M, Berndt S, Fiebig L, Kling S, Ji Q, Gu Q, Lang T, Hafner FT, Teufel M, Zopf D. Antitumor effects of regorafenib and sorafenib in preclinical models of hepatocellular carcinoma. Oncotarget. 2017 Nov 6;8(63):107096-107108. doi: 10.18632/oncotarget.22334. eCollection 2017 Dec 5.
Saraswati S, Alhaider A, Abdelgadir AM, Tanwer P, Korashy HM. Phloretin attenuates STAT-3 activity and overcomes sorafenib resistance targeting SHP-1-mediated inhibition of STAT3 and Akt/VEGFR2 pathway in hepatocellular carcinoma. Cell Commun Signal. 2019 Oct 16;17(1):127. doi: 10.1186/s12964-019-0430-7.
Matsuki M, Hoshi T, Yamamoto Y, Ikemori-Kawada M, Minoshima Y, Funahashi Y, Matsui J. Lenvatinib inhibits angiogenesis and tumor fibroblast growth factor signaling pathways in human hepatocellular carcinoma models. Cancer Med. 2018 Jun;7(6):2641-2653. doi: 10.1002/cam4.1517. Epub 2018 May 7.
Ogasawara S, Mihara Y, Kondo R, Kusano H, Akiba J, Yano H. Antiproliferative Effect of Lenvatinib on Human Liver Cancer Cell Lines In Vitro and In Vivo. Anticancer Res. 2019 Nov;39(11):5973-5982. doi: 10.21873/anticanres.13802.
Ikeda K, Kudo M, Kawazoe S, Osaki Y, Ikeda M, Okusaka T, Tamai T, Suzuki T, Hisai T, Hayato S, Okita K, Kumada H. Phase 2 study of lenvatinib in patients with advanced hepatocellular carcinoma. J Gastroenterol. 2017 Apr;52(4):512-519. doi: 10.1007/s00535-016-1263-4. Epub 2016 Oct 4.
Alsina A, Kudo M, Vogel A, Cheng AL, Tak WY, Ryoo BY, Evans TRJ, Lopez Lopez C, Daniele B, Misir S, Ren M, Izumi N, Qin S, Finn RS. Effects of Subsequent Systemic Anticancer Medication Following First-Line Lenvatinib: A Post Hoc Responder Analysis from the Phase 3 REFLECT Study in Unresectable Hepatocellular Carcinoma. Liver Cancer. 2020 Jan;9(1):93-104. doi: 10.1159/000504624. Epub 2019 Dec 16.
Zhang BH, Cai YS, Jiang L, Yang JY. Donafenib as a first-line monotherapy for advanced hepatocellular carcinoma. Hepatobiliary Surg Nutr. 2021 Oct;10(5):737-740. doi: 10.21037/hbsn-21-304. No abstract available.
Qin S, Bi F, Gu S, Bai Y, Chen Z, Wang Z, Ying J, Lu Y, Meng Z, Pan H, Yang P, Zhang H, Chen X, Xu A, Cui C, Zhu B, Wu J, Xin X, Wang J, Shan J, Chen J, Zheng Z, Xu L, Wen X, You Z, Ren Z, Liu X, Qiu M, Wu L, Chen F. Donafenib Versus Sorafenib in First-Line Treatment of Unresectable or Metastatic Hepatocellular Carcinoma: A Randomized, Open-Label, Parallel-Controlled Phase II-III Trial. J Clin Oncol. 2021 Sep 20;39(27):3002-3011. doi: 10.1200/JCO.21.00163. Epub 2021 Jun 29.
Zhou J, Tan Z, Sun B, Leng Y, Liu S. Application of indocyanine green fluorescence imaging in hepatobiliary surgery. Int J Surg. 2024 Dec 1;110(12):7948-7961. doi: 10.1097/JS9.0000000000001802.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
SLiu
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.