Blood Flow Restriction Resistance Training Intervention on Vascular Function
NCT ID: NCT05451641
Last Updated: 2024-12-06
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
26 participants
INTERVENTIONAL
2022-09-20
2024-09-19
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Currently, the effect of BFR training on vascular function remains unclear. When the cuffs are removed after BFR training, there will be a reactive hyperemic blood flow to wash out all the metabolites produced during exercise. This reactive hyperemic blood flow also will impose shear stress on the arterial vessel wall. The shear stress will lead to an increase in vasodilator factors, which lead to an improvement in vascular function. However, other studies have pointed out that BFR training might cause a negative effect on vascular function when the occlusion pressure was too high. The possible mechanisms of the negative effect might be ischemia-reperfusion injury and retrograde shear stress in the artery. The wide-rigid cuffs are easily available but have the potential to inhibit the expansion of muscle upon increased blood flow accompanying exercise and muscle contraction while the narrow-elastic bands do not prevent the expansion. To the investigators' best knowledge, there is no study directly comparing different BFR cuffs on vascular function. Thus, the aim of the present study is to compare the effects of different BFR cuffs on vascular function (evaluated by flow-mediated dilation, a non-invasive measure of endothelial-derived vasodilation).
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
BASIC_SCIENCE
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Wide-rigid cuff
The wide-rigid cuff will be randomly assigned to one of the subject's arms.
Blood flow restriction resistance training
The participants will receive a 2-week exercise training program (3 times per week). Each training session will consist of 3 resistance training exercises with two blood flow restriction devices (wide-rigid cuff and narrow-elastic band). For both arms, the participants will perform the same exercise with different BFR devices.
Narrow-elastic band
The narrow-elastic band will be randomly assigned to another arm of the subject.
Blood flow restriction resistance training
The participants will receive a 2-week exercise training program (3 times per week). Each training session will consist of 3 resistance training exercises with two blood flow restriction devices (wide-rigid cuff and narrow-elastic band). For both arms, the participants will perform the same exercise with different BFR devices.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Blood flow restriction resistance training
The participants will receive a 2-week exercise training program (3 times per week). Each training session will consist of 3 resistance training exercises with two blood flow restriction devices (wide-rigid cuff and narrow-elastic band). For both arms, the participants will perform the same exercise with different BFR devices.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
* morbid obesity
* hypertension
* smoking
* overt cardiovascular disease
* using any medication that might affect the cardiovascular system
* current participation in resistance training.
18 Years
40 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University of Texas at Austin
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Hirofumi Tanaka, PhD
Role: PRINCIPAL_INVESTIGATOR
The University of Texas at Austin
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Cardiovascular Aging Research Laboratory
Austin, Texas, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Lixandrao ME, Ugrinowitsch C, Berton R, Vechin FC, Conceicao MS, Damas F, Libardi CA, Roschel H. Magnitude of Muscle Strength and Mass Adaptations Between High-Load Resistance Training Versus Low-Load Resistance Training Associated with Blood-Flow Restriction: A Systematic Review and Meta-Analysis. Sports Med. 2018 Feb;48(2):361-378. doi: 10.1007/s40279-017-0795-y.
Pearson SJ, Hussain SR. A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Med. 2015 Feb;45(2):187-200. doi: 10.1007/s40279-014-0264-9.
Early KS, Rockhill M, Bryan A, Tyo B, Buuck D, McGinty J. EFFECT OF BLOOD FLOW RESTRICTION TRAINING ON MUSCULAR PERFORMANCE, PAIN AND VASCULAR FUNCTION. Int J Sports Phys Ther. 2020 Dec;15(6):892-900. doi: 10.26603/ijspt20200892.
Hunt JE, Galea D, Tufft G, Bunce D, Ferguson RA. Time course of regional vascular adaptations to low load resistance training with blood flow restriction. J Appl Physiol (1985). 2013 Aug 1;115(3):403-11. doi: 10.1152/japplphysiol.00040.2013. Epub 2013 May 23.
Horiuchi M, Okita K. Blood flow restricted exercise and vascular function. Int J Vasc Med. 2012;2012:543218. doi: 10.1155/2012/543218. Epub 2012 Oct 22.
Alhejily W, Aleksi A, Martin BJ, Anderson TJ. The effect of ischemia-reperfusion injury on measures of vascular function. Clin Hemorheol Microcirc. 2014;56(3):265-71. doi: 10.3233/CH-131741.
Thijssen DH, Dawson EA, Tinken TM, Cable NT, Green DJ. Retrograde flow and shear rate acutely impair endothelial function in humans. Hypertension. 2009 Jun;53(6):986-92. doi: 10.1161/HYPERTENSIONAHA.109.131508. Epub 2009 Apr 20.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
STUDY00002999
Identifier Type: -
Identifier Source: org_study_id