Measured vs Navigated Techniques in Total Hip Arthroplasty

NCT ID: NCT05393778

Last Updated: 2022-05-26

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

UNKNOWN

Clinical Phase

NA

Total Enrollment

100 participants

Study Classification

INTERVENTIONAL

Study Start Date

2022-07-01

Study Completion Date

2024-09-01

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Accurate reconstruction of the native hip parameters following total hip arthroplasty is associated with improved outcome. In order to improve ability for optimum reconstruction, 3-D templating software can be utilized that provide detailed information regarding native anatomy. In order to achieve reconstruction within acceptable parameters as per pre-operative plan, some surgeons propose the use of intra-operative devices that measure component orientation and joint reconstruction ("Measured-THA"), whilst others propose the use of navigation tools ("Navigation-THA). Both techniques have shown superiority compared to the most commonly used "freehand" technique, but no prior study has assessed for superiority between these 2 techniques. Furthermore, to-date assessment of post-operative reconstruction has not been tested in detail as post-THA assessments are based on radiographs which provide incomplete, 2-dimensional, assessments and are lacking the important axial plane reconstruction parameters. The aims of this prospective, randomized, trial are to 1. appraise the ability to achieve the pre-operative 3-D plan (as per FormusLab) through a comparison of pre-op plan to post-operative reconstruction; 2. compare ability to accurately reconstruct hip following THA between "navigated-" (IntelliJoint®) and "measured-" techniques; and in doing so it will also 3. assess the accuracy of the intra-operative assessments of reconstruction through a comparison of objective (i.e. measured) intra-operative assessments with the post-operative reconstructions achieved.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Osteoarthritis, Hip

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Primary Study Purpose

TREATMENT

Blinding Strategy

SINGLE

Participants

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Measured Technique

Patients in this group will have pre-operative planning done using the measured technique.

Group Type EXPERIMENTAL

Measured Technique

Intervention Type PROCEDURE

Manual intra-operative checks and tools are used to aid in component placement during surgery.

Navigated Technique

Patients in this group will have pre-operative planning done using the navigated technique.

Group Type EXPERIMENTAL

Navigated Technique

Intervention Type PROCEDURE

IntelliJoint® navigation is an imageless-based navigation system that utilizes a miniature infrared camera and microelectronics to measure hip center of rotation, acetabular inclination and version, leg length, and offset. The device provides accurate real-time data on implant positioning to aid in placement of the components during surgery.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Measured Technique

Manual intra-operative checks and tools are used to aid in component placement during surgery.

Intervention Type PROCEDURE

Navigated Technique

IntelliJoint® navigation is an imageless-based navigation system that utilizes a miniature infrared camera and microelectronics to measure hip center of rotation, acetabular inclination and version, leg length, and offset. The device provides accurate real-time data on implant positioning to aid in placement of the components during surgery.

Intervention Type PROCEDURE

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Patients who are signed for a THA for primary or secondary osteoarthritis without overt deformity that would require revision type implants and with good enough bone quality to be listed for uncemented component implantation.

Exclusion Criteria

* Secondary OA due to Dysplasia (Hartofilakidis \>1)
* Avascular necrosis of the hip with destruction of joint structure
* Sequelae of Pediatric deformity with abnormal anatomy
* Cemented fixation of femur or acetabulum
* Previous arthroplasty-type procedure
* Previous septic arthritis of the hip
Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

FormusLab

UNKNOWN

Sponsor Role collaborator

Ottawa Hospital Research Institute

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

George Grammatopoulos, MD

Role: PRINCIPAL_INVESTIGATOR

The Ottawa Hospital

Central Contacts

Reach out to these primary contacts for questions about participation or study logistics.

Isabel Horton

Role: CONTACT

613-737-8899 ext. 73032

References

Explore related publications, articles, or registry entries linked to this study.

Fang CJ, Shaker JM, Ward DM, Jawa A, Mattingly DA, Smith EL. Financial Burden of Revision Hip and Knee Arthroplasty at an Orthopedic Specialty Hospital: Higher Costs and Unequal Reimbursements. J Arthroplasty. 2021 Aug;36(8):2680-2684. doi: 10.1016/j.arth.2021.03.044. Epub 2021 Mar 23.

Reference Type BACKGROUND
PMID: 33840537 (View on PubMed)

Hu X, Zheng N, Chen Y, Dai K, Dimitriou D, Li H, Tsai TY. Optimizing the Femoral Offset for Restoring Physiological Hip Muscle Function in Patients With Total Hip Arthroplasty. Front Bioeng Biotechnol. 2021 Mar 30;9:645019. doi: 10.3389/fbioe.2021.645019. eCollection 2021.

Reference Type BACKGROUND
PMID: 33869155 (View on PubMed)

Grammatopoulos G, Thomas GE, Pandit H, Beard DJ, Gill HS, Murray DW. The effect of orientation of the acetabular component on outcome following total hip arthroplasty with small diameter hard-on-soft bearings. Bone Joint J. 2015 Feb;97-B(2):164-72. doi: 10.1302/0301-620X.97B2.34294.

Reference Type BACKGROUND
PMID: 25628277 (View on PubMed)

Agarwal S, Eckhard L, Walter WL, Peng A, Hatton A, Donnelly B, de Steiger R. The Use of Computer Navigation in Total Hip Arthroplasty Is Associated with a Reduced Rate of Revision for Dislocation: A Study of 6,912 Navigated THA Procedures from the Australian Orthopaedic Association National Joint Replacement Registry. J Bone Joint Surg Am. 2021 Oct 20;103(20):1900-1905. doi: 10.2106/JBJS.20.00950.

Reference Type BACKGROUND
PMID: 34143758 (View on PubMed)

Shon WY, Baldini T, Peterson MG, Wright TM, Salvati EA. Impingement in total hip arthroplasty a study of retrieved acetabular components. J Arthroplasty. 2005 Jun;20(4):427-35. doi: 10.1016/j.arth.2004.09.058.

Reference Type BACKGROUND
PMID: 16124957 (View on PubMed)

Barrack RL, Krempec JA, Clohisy JC, McDonald DJ, Ricci WM, Ruh EL, Nunley RM. Accuracy of acetabular component position in hip arthroplasty. J Bone Joint Surg Am. 2013 Oct 2;95(19):1760-8. doi: 10.2106/JBJS.L.01704.

Reference Type BACKGROUND
PMID: 24088968 (View on PubMed)

Callanan MC, Jarrett B, Bragdon CR, Zurakowski D, Rubash HE, Freiberg AA, Malchau H. The John Charnley Award: risk factors for cup malpositioning: quality improvement through a joint registry at a tertiary hospital. Clin Orthop Relat Res. 2011 Feb;469(2):319-29. doi: 10.1007/s11999-010-1487-1.

Reference Type BACKGROUND
PMID: 20717858 (View on PubMed)

Bosker BH, Verheyen CC, Horstmann WG, Tulp NJ. Poor accuracy of freehand cup positioning during total hip arthroplasty. Arch Orthop Trauma Surg. 2007 Jul;127(5):375-9. doi: 10.1007/s00402-007-0294-y. Epub 2007 Feb 13.

Reference Type BACKGROUND
PMID: 17297597 (View on PubMed)

Schwarzkopf R, Muir JM, Paprosky WG, Seymour S, Cross MB, Vigdorchik JM. Quantifying Pelvic Motion During Total Hip Arthroplasty Using a New Surgical Navigation Device. J Arthroplasty. 2017 Oct;32(10):3056-3060. doi: 10.1016/j.arth.2017.04.046. Epub 2017 May 4.

Reference Type BACKGROUND
PMID: 28559196 (View on PubMed)

Pongkunakorn A, Chatmaitri S, Diewwattanawiwat K. Use of smartphone to improve acetabular component positioning in total hip athroplasty: A comparative clinical study. J Orthop Surg (Hong Kong). 2019 Jan-Apr;27(1):2309499019825578. doi: 10.1177/2309499019825578.

Reference Type BACKGROUND
PMID: 30798733 (View on PubMed)

Gupta R, Pathak P, Singh R, Majumdar KP. Double-Stitch Technique: A Simple and Effective Method to Minimize Limb Length Discrepancy after Total Hip Arthroplasty. Indian J Orthop. 2019 Jan-Feb;53(1):169-173. doi: 10.4103/ortho.IJOrtho_188_18.

Reference Type BACKGROUND
PMID: 30905998 (View on PubMed)

Mitsutake R, Tanino H, Nishida Y, Higa M, Ito H. A simple angle-measuring instrument for measuring cemented stem anteversion during total hip arthroplasty. BMC Musculoskelet Disord. 2020 Feb 19;21(1):113. doi: 10.1186/s12891-020-3142-7.

Reference Type BACKGROUND
PMID: 32075628 (View on PubMed)

Steppacher SD, Kowal JH, Murphy SB. Improving cup positioning using a mechanical navigation instrument. Clin Orthop Relat Res. 2011 Feb;469(2):423-8. doi: 10.1007/s11999-010-1553-8.

Reference Type BACKGROUND
PMID: 20852974 (View on PubMed)

Meermans G, Van Doorn WJ, Koenraadt K, Kats J. The use of the transverse acetabular ligament for determining the orientation of the components in total hip replacement: a randomised controlled trial. Bone Joint J. 2014 Mar;96-B(3):312-8. doi: 10.1302/0301-620X.96B3.32989.

Reference Type BACKGROUND
PMID: 24589784 (View on PubMed)

Paprosky WG, Muir JM. Intellijoint HIP(R): a 3D mini-optical navigation tool for improving intraoperative accuracy during total hip arthroplasty. Med Devices (Auckl). 2016 Nov 18;9:401-408. doi: 10.2147/MDER.S119161. eCollection 2016.

Reference Type BACKGROUND
PMID: 27920583 (View on PubMed)

Parvizi J, Benson JR, Muir JM. A new mini-navigation tool allows accurate component placement during anterior total hip arthroplasty. Med Devices (Auckl). 2018 Mar 22;11:95-104. doi: 10.2147/MDER.S151835. eCollection 2018.

Reference Type BACKGROUND
PMID: 29606894 (View on PubMed)

Kievit AJ, Dobbe JGG, Mallee WH, Blankevoort L, Streekstra GJ, Schafroth MU. Accuracy of cup placement in total hip arthroplasty by means of a mechanical positioning device: a comprehensive cadaveric 3d analysis of 16 specimens. Hip Int. 2021 Jan;31(1):58-65. doi: 10.1177/1120700019874822. Epub 2019 Sep 11.

Reference Type BACKGROUND
PMID: 31506002 (View on PubMed)

Snijders T, van Gaalen SM, de Gast A. Precision and accuracy of imageless navigation versus freehand implantation of total hip arthroplasty: A systematic review and meta-analysis. Int J Med Robot. 2017 Dec;13(4). doi: 10.1002/rcs.1843. Epub 2017 May 29.

Reference Type BACKGROUND
PMID: 28556582 (View on PubMed)

Singh V, Realyvasquez J, Simcox T, Rozell JC, Schwarzkopf R, Davidovitch RI. Robotics Versus Navigation Versus Conventional Total Hip Arthroplasty: Does the Use of Technology Yield Superior Outcomes? J Arthroplasty. 2021 Aug;36(8):2801-2807. doi: 10.1016/j.arth.2021.02.074. Epub 2021 Mar 5.

Reference Type BACKGROUND
PMID: 33773864 (View on PubMed)

Koper MC, Reijman M, van Es EM, Waarsing JH, Koot HWJ, Keizer SB, Jansen I, van Biezen FC, Verhaar JAN, Bos PK. No added value for Computer-Assisted surgery to improve femoral component positioning and Patient Reported Outcomes in Hip Resurfacing Arthroplasty; a multi-center randomized controlled trial. BMC Musculoskelet Disord. 2019 Oct 25;20(1):473. doi: 10.1186/s12891-019-2883-7.

Reference Type BACKGROUND
PMID: 31651318 (View on PubMed)

Innmann MM, Maier MW, Streit MR, Grammatopoulos G, Bruckner T, Gotterbarm T, Merle C. Additive Influence of Hip Offset and Leg Length Reconstruction on Postoperative Improvement in Clinical Outcome After Total Hip Arthroplasty. J Arthroplasty. 2018 Jan;33(1):156-161. doi: 10.1016/j.arth.2017.08.007. Epub 2017 Aug 12.

Reference Type BACKGROUND
PMID: 28887022 (View on PubMed)

Schiffner E, Latz D, Jungbluth P, Grassmann JP, Tanner S, Karbowski A, Windolf J, Schneppendahl J. Is computerised 3D templating more accurate than 2D templating to predict size of components in primary total hip arthroplasty? Hip Int. 2019 May;29(3):270-275. doi: 10.1177/1120700018776311. Epub 2018 May 20.

Reference Type BACKGROUND
PMID: 29781288 (View on PubMed)

Minoda Y, Ohzono K, Aihara M, Umeda N, Tomita M, Hayakawa K. Are acetabular component alignment guides for total hip arthroplasty accurate? J Arthroplasty. 2010 Sep;25(6):986-9. doi: 10.1016/j.arth.2009.07.016. Epub 2009 Oct 17.

Reference Type BACKGROUND
PMID: 19837559 (View on PubMed)

Beverland DE, O'Neill CK, Rutherford M, Molloy D, Hill JC. Placement of the acetabular component. Bone Joint J. 2016 Jan;98-B(1 Suppl A):37-43. doi: 10.1302/0301-620X.98B1.36343.

Reference Type BACKGROUND
PMID: 26733639 (View on PubMed)

Bonnin MP, Archbold PH, Basiglini L, Fessy MH, Beverland DE. Do we medialise the hip centre of rotation in total hip arthroplasty? Influence of acetabular offset and surgical technique. Hip Int. 2012 Jul-Aug;22(4):371-8. doi: 10.5301/HIP.2012.9350.

Reference Type BACKGROUND
PMID: 22865253 (View on PubMed)

Merle C, Innmann MM, Waldstein W, Pegg EC, Aldinger PR, Gill HS, Murray DW, Grammatopoulos G. High Variability of Acetabular Offset in Primary Hip Osteoarthritis Influences Acetabular Reaming-A Computed Tomography-Based Anatomic Study. J Arthroplasty. 2019 Aug;34(8):1808-1814. doi: 10.1016/j.arth.2019.03.065. Epub 2019 Apr 1.

Reference Type BACKGROUND
PMID: 31122846 (View on PubMed)

Meermans G, Goetheer-Smits I, Lim RF, Van Doorn WJ, Kats J. The difference between the radiographic and the operative angle of inclination of the acetabular component in total hip arthroplasty: use of a digital protractor and the circumference of the hip to improve orientation. Bone Joint J. 2015 May;97-B(5):603-10. doi: 10.1302/0301-620X.97B5.34781.

Reference Type BACKGROUND
PMID: 25922452 (View on PubMed)

Lee YK, Kim JW, Kim TY, Ha YC, Koo KH. Validity of the intra-operative measurement of stem anteversion and factors for the erroneous estimation in cementless total hip arthroplasty using postero-lateral approach. Orthop Traumatol Surg Res. 2018 May;104(3):341-346. doi: 10.1016/j.otsr.2017.11.023. Epub 2018 Feb 16.

Reference Type BACKGROUND
PMID: 29458202 (View on PubMed)

Dorr LD, Wan Z, Malik A, Zhu J, Dastane M, Deshmane P. A comparison of surgeon estimation and computed tomographic measurement of femoral component anteversion in cementless total hip arthroplasty. J Bone Joint Surg Am. 2009 Nov;91(11):2598-604. doi: 10.2106/JBJS.H.01225.

Reference Type BACKGROUND
PMID: 19884433 (View on PubMed)

Blumenfeld TJ. Pearls: Clinical Application of Ranawat's Sign. Clin Orthop Relat Res. 2017 Jul;475(7):1789-1790. doi: 10.1007/s11999-017-5376-8. Epub 2017 May 11. No abstract available.

Reference Type BACKGROUND
PMID: 28497375 (View on PubMed)

Dorr LD, Malik A, Dastane M, Wan Z. Combined anteversion technique for total hip arthroplasty. Clin Orthop Relat Res. 2009 Jan;467(1):119-27. doi: 10.1007/s11999-008-0598-4. Epub 2008 Nov 1.

Reference Type BACKGROUND
PMID: 18979146 (View on PubMed)

Amuwa C, Dorr LD. The combined anteversion technique for acetabular component anteversion. J Arthroplasty. 2008 Oct;23(7):1068-70. doi: 10.1016/j.arth.2008.04.025. Epub 2008 Jun 4.

Reference Type BACKGROUND
PMID: 18534533 (View on PubMed)

Ogawa T, Takao M, Hamada H, Sakai T, Sugano N. Soft tissue tension is four times lower in the unstable primary total hip arthroplasty. Int Orthop. 2018 Sep;42(9):2059-2065. doi: 10.1007/s00264-018-3908-9. Epub 2018 Mar 27.

Reference Type BACKGROUND
PMID: 29589084 (View on PubMed)

Hill JC, Archbold HA, Diamond OJ, Orr JF, Jaramaz B, Beverland DE. Using a calliper to restore the centre of the femoral head during total hip replacement. J Bone Joint Surg Br. 2012 Nov;94(11):1468-74. doi: 10.1302/0301-620X.94B11.29144.

Reference Type BACKGROUND
PMID: 23109624 (View on PubMed)

Dorr LD, Hishiki Y, Wan Z, Newton D, Yun A. Development of imageless computer navigation for acetabular component position in total hip replacement. Iowa Orthop J. 2005;25:1-9.

Reference Type BACKGROUND
PMID: 16089064 (View on PubMed)

Jacob I, Benson J, Shanaghan K, Gonzalez Della Valle A. Acetabular positioning is more consistent with the use of a novel miniature computer-assisted device. Int Orthop. 2020 Mar;44(3):429-435. doi: 10.1007/s00264-020-04484-2. Epub 2020 Jan 22.

Reference Type BACKGROUND
PMID: 31965312 (View on PubMed)

Christ A, Ponzio D, Pitta M, Carroll K, Muir JM, Sculco PK. Minimal Increase in Total Hip Arthroplasty Surgical Procedural Time with the Use of a Novel Surgical Navigation Tool. Open Orthop J. 2018 Sep 28;12:389-395. doi: 10.2174/1874325001812010389. eCollection 2018.

Reference Type BACKGROUND
PMID: 30416609 (View on PubMed)

Murray DW. The definition and measurement of acetabular orientation. J Bone Joint Surg Br. 1993 Mar;75(2):228-32. doi: 10.1302/0301-620X.75B2.8444942.

Reference Type BACKGROUND
PMID: 8444942 (View on PubMed)

Gross AE, Safir OA, Kuzyk PRT, Sculco PK, Wolfstadt J, Girardi BL, et al. Optimizing leg length and cup position: A surgical navigation tool. Seminars in Arthroplasty. 2018;29(3):157-60.

Reference Type BACKGROUND

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

3390

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

PT vs no PT Following THA
NCT02687945 COMPLETED NA