Advanced Spatiomotor Rehabilitation for Navigation in Blindness & Visual Impairment
NCT ID: NCT05377853
Last Updated: 2023-11-22
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
NA
75 participants
INTERVENTIONAL
2022-02-15
2024-02-29
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
In accordance with National Eye Institute (NEI) strategic goals, this multidisciplinary project will promote the development of well-informed new approaches to navigational rehabilitation, memory enhancement and cross-modal brain plasticity to benefit 'cutting edge' fields of mobile assistive technologies, vision restoration and memory facilitation for the aging brain.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
The investigators therefore propose a rigorous multidisciplinary approach to this issue, which lies at the intersection of the fields of spatiomotor rehabilitation, blindness assessment technologies, and brain function, each a focus of one Specific Aim. To train the spatial cognition abilities underlying successful navigation, the current proposal aims to translate the power of the C-K Rehabilitation Training to the domain of navigation. The blind and visually impaired trainees will quickly learn how to generate precise and stable cognitive maps of haptically explored raised-line images or tactile maps, and how to use the formed cognitive maps to confidently guide both drawing 'hand navigation' on a map-scale, and whole-body blind navigation on the macro-scale. Once translated to navigation, the preliminary data show that this efficient and enjoyable training will rapidly and sustainably enhance spatial cognition functions both for improved navigation performance and for enhancement of more general spatial cognitive skills. Beyond its practical advantages, the rapid and effective training protocol will also serve as an efficient tool to drive and study training-based neuroplasticity mechanisms through a comprehensive whole-brain multimodal brain imaging platform.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Blindness history
Since this is a regression analysis, all participants are assigned to the same Arm with blindness history and the demographics as covariates.
Cognitive-Kinesthetic Navigational Training
Training with tactile maps to improve spatial memory capability for enhanced navigational capabilities.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Cognitive-Kinesthetic Navigational Training
Training with tactile maps to improve spatial memory capability for enhanced navigational capabilities.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Vision from \< 20/500 to NLP (No Light Perception)
Brain Imaging Studies:
* Vision from \< 20/500 to NLP
* Within average gender range for height +/-1 standard deviation
* Within average gender range for weight +/-1 standard deviation
* Comfortable with MRI procedures
Exclusion Criteria
* Neurological deficits
* Inability to normally control lower or upper extremities
* Inability to hear and understand instructions.
Brain Imaging Studies:
18 Years
80 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Smith-Kettlewell Eye Research Institute
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Lora T Likova
Role: PRINCIPAL_INVESTIGATOR
Senior Scientist
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Smith-Kettlewell Eye Research Institute
San Francisco, California, United States
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Likova LT, Cacciamani L. Transfer of Learning in People Who Are Blind: Enhancement of Spatial-Cognitive Abilities Through Drawing. J Vis Impair Blind. 2018 Jul 1;112(4):385-397. doi: 10.1177/0145482x1811200405.
Likova LT, Mineff KN, Nicholas SC. Mental Visualization in the Cerebellum: Rapid Non-motor Learning at Sub-Lobular and Causal Network Levels. Front Syst Neurosci. 2021 Sep 10;15:655514. doi: 10.3389/fnsys.2021.655514. eCollection 2021.
Likova LT. A Cross-Modal Perspective on the Relationships between Imagery and Working Memory. Front Psychol. 2013 Jan 18;3:561. doi: 10.3389/fpsyg.2012.00561. eCollection 2012.
Likova LT, Tyler CW, Cacciamani L, Mineff K, Nicholas S. The Cortical Network for Braille Writing in the Blind. IS&T Int Symp Electron Imaging. 2016;2016:10.2352/ISSN.2470-1173.2016.16.HVEI-095. doi: 10.2352/ISSN.2470-1173.2016.16.HVEI-095. Epub 2016 Feb 14.
Cacciamani L, Likova LT. Memory-guided drawing training increases Granger causal influences from the perirhinal cortex to V1 in the blind. Neurobiol Learn Mem. 2017 May;141:101-107. doi: 10.1016/j.nlm.2017.03.013. Epub 2017 Mar 24.
Likova LT, Mei M, Mineff KN, Nicholas SC. Learning face perception without vision: Rebound learning effect and hemispheric differences in congenital vs late-onset blindness. IS&T Int Symp Electron Imaging. 2019 Jan 13;2019:2371-23713. doi: 10.2352/ISSN.2470-1173.2019.12.HVEI-237.
Likova LT. Drawing enhances cross-modal memory plasticity in the human brain: a case study in a totally blind adult. Front Hum Neurosci. 2012 May 14;6:44. doi: 10.3389/fnhum.2012.00044. eCollection 2012.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
EY024056
Identifier Type: -
Identifier Source: org_study_id