Role of Epithelial Barrier Integrity in Biologic Treatment Response of Severe Asthmatics With/Out Chronic Rhinosinusitis With Nasal Polyps (CRSwNP).
NCT ID: NCT05365841
Last Updated: 2024-01-18
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
85 participants
OBSERVATIONAL
2022-05-15
2025-11-16
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Comparison of Immune Profiles in Chronic Rhinosinusitis Patients After Mepolizumab Treatment
NCT05642806
Treatment With Mepolizumab on Patients With Severe Refractory Eosinophilic Asthma
NCT05063981
Mepolizumab Effectiveness in Patients With Chronic Rhinosinusitis, Nasal Polyps and Comorbid Severe Eosinophilic Asthma
NCT06069310
Mepolizumab in the Treatment of Patients With Severe Uncontrolled CRSwNP: a Multicentric Real Life Observational Study
NCT06258772
Efficacy and Safety of Mepolizumab in Adults With Chronic Rhinosinusitis With Nasal Polyps (CRSwNP)/ Eosinophilic Chronic Rhinosinusitis (ECRS)
NCT04607005
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
PROSPECTIVE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Severe asthma without CRSwNP
control group; n\~20 of anti-IL5 naïve severe asthmatics
Mepolizumab 100 MG
Patients with SEA eligible to receive anti-IL5 treatment, which is a biologic treatment for SEA
Severe asthma with CRSwNP
n\~40 of anti-IL5 naïve severe asthmatics
Mepolizumab 100 MG
Patients with SEA eligible to receive anti-IL5 treatment, which is a biologic treatment for SEA
subjects CRSwNP with mild or no asthma
\~25;2nd control group
No interventions assigned to this group
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Mepolizumab 100 MG
Patients with SEA eligible to receive anti-IL5 treatment, which is a biologic treatment for SEA
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Anti-IL5/IL5R naïve
* Confirmed asthma diagnosis and severity and treatment requirements (for severe asthma group see boxes 1-3). For the 2nd control group, patients with CRSwNP must have a diagnosis of mild asthma (GINA steps 1-2) or no asthma by pulmonologist.
* Polyposis must be bilateral, to be considered as CRSwNP
* Triggers and relevant co-morbidity have been assessed and are well controlled Triggers such as active or passive smoking, beta-blockers, aspirin/NSAIDs, allergen exposure;Comorbidities such as rhinitis, obesity, GERD, OSA, VCD, depression/anxiety.
* Age: Adults ≥18 years of age
* Any smoking status
* Any ethnicity
* Be affiliated to or a beneficiary of a social security category and/health insurance.
* Gender: Male and Eligible Female. To be eligible for entry into the study, females of childbearing potential must commit to consistent and correct use of an acceptable method of birth control for the duration of the follow up (and for 4 months after the last injection administration). A serum pregnancy test is required of all females. This test will be performed at the initial screening visit. In addition, a urine pregnancy test can be offered (optional) for all females during each scheduled treatment visit prior to the infusion of biologic product until the 1-year follow-up visit.
Laboratory abnormality: No evidence of clinically significant abnormality (other than those seen in SEA) in the haematological, biochemical or urinalysis screen at Visit 1, as judged by the investigator.
* Asthma Exacerbation: Subjects with an ongoing asthma exacerbation should have their screening and treatment initiation visit delayed until the investigator considers the subject has returned to their baseline asthma status. If the 4-week screening period (visits 1 and 1a) has elapsed, then the subject should be considered a screening failure. An exacerbation is defined as worsening of asthma requiring the use of systemic CS and/or emergency department visit, or hospitalisation. For subjects on maintenance oral corticosteroids, an exacerbation requiring oral CS is defined as the use of oral/systemic corticosteroids at least double the existing dose for at least 3 days.
* Maintenance Asthma Therapy: No changes in the dose or regimen of baseline ICS and/or additional controller medication during the screening period (except for treatment of an exacerbation).
* Maintenance CRSwNP: No changes in the dose or regimen of baseline intranasal CS and/or additional controller medication during the screening period (except for treatment of an exacerbation).
* Subjects with a previous surgery for the removal of nasal polyps are allowed to participate and will be considered as subjects with CRSwNP (with severe asthma or not). However, any subject who had at least one surgery for removal of nasal polyps, even if at study screening he/she is free of nasal polyps, cannot be considered as a subject without CRSwNP.
* Severe asthma patients must meet requirements for biologic therapy with anti-IL5 treatment (Mepolizumab)
Exclusion Criteria
* Current exacerbation at visit 1 (repeat screening when stable). If exacerbation is lasting up until Visit 1a then exclude subject.
* Cognitive impairment preventing completion of data collection forms
* People highly dependent on medical care
* People with significant life limiting co-morbidity
* Other eosinophilic conditions (eosinophilic granulomatosis polyangiitis (Churg-Strauss syndrome), eosinophilic oesophagitis etc)
* Unilateral polyposis
* Primary diagnosis of lung disease other than asthma (chronic obstructive lung disease (COPD), asthma-COPD overlap (ACO), interstitial lung disease, sarcoidosis, bronchiectasis, cystic fibrosis, primary ciliary dyskinesia, active tuberculosis, allergic bronchopulmonary aspergillosis (ABPA))
* Current lung cancer or other blood, lymphatic or solid organ malignancy
* Autoimmune diseases of the skin, muscle-skeletal or gastrointestinal system needing systemic corticosteroids, immunosuppressants or biologic treatment as well as individuals with granulomatosis with polyangiitis (Wegener's granulomatosis)
* Inability to attend study and treatment visits
* Inability to understand and speak Greek or English language
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University of Crete
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Nikolaos Tzanakis
Professor
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
"PAGNI" University Hospital, Crete
Heraklion, Crete, Greece
Aikaterini Antoniou
Heraklion, Crete, Greece
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Knight DA, Stick SM, Hackett TL. Defective function at the epithelial junction: a novel therapeutic frontier in asthma? J Allergy Clin Immunol. 2011 Sep;128(3):557-8. doi: 10.1016/j.jaci.2011.07.031. No abstract available.
NAYLOR B. The shedding of the mucosa of the bronchial tree in asthma. Thorax. 1962 Mar;17(1):69-72. doi: 10.1136/thx.17.1.69. No abstract available.
Hoshino M, Ohtawa J. Effects of adding omalizumab, an anti-immunoglobulin E antibody, on airway wall thickening in asthma. Respiration. 2012;83(6):520-8. doi: 10.1159/000334701. Epub 2012 Jan 11.
Watelet JB, Gevaert P, Holtappels G, Van Cauwenberge P, Bachert C. Collection of nasal secretions for immunological analysis. Eur Arch Otorhinolaryngol. 2004 May;261(5):242-6. doi: 10.1007/s00405-003-0691-y. Epub 2003 Oct 9.
Lund VJ, Kennedy DW. Quantification for staging sinusitis. The Staging and Therapy Group. Ann Otol Rhinol Laryngol Suppl. 1995 Oct;167:17-21.
Hopkins C, Browne JP, Slack R, Lund V, Brown P. The Lund-Mackay staging system for chronic rhinosinusitis: how is it used and what does it predict? Otolaryngol Head Neck Surg. 2007 Oct;137(4):555-61. doi: 10.1016/j.otohns.2007.02.004.
Fokkens WJ, Lund VJ, Mullol J, Bachert C, Alobid I, Baroody F, Cohen N, Cervin A, Douglas R, Gevaert P, Georgalas C, Goossens H, Harvey R, Hellings P, Hopkins C, Jones N, Joos G, Kalogjera L, Kern B, Kowalski M, Price D, Riechelmann H, Schlosser R, Senior B, Thomas M, Toskala E, Voegels R, Wang de Y, Wormald PJ. European Position Paper on Rhinosinusitis and Nasal Polyps 2012. Rhinol Suppl. 2012 Mar;23:3 p preceding table of contents, 1-298.
Bousquet J, Heinzerling L, Bachert C, Papadopoulos NG, Bousquet PJ, Burney PG, Canonica GW, Carlsen KH, Cox L, Haahtela T, Lodrup Carlsen KC, Price D, Samolinski B, Simons FE, Wickman M, Annesi-Maesano I, Baena-Cagnani CE, Bergmann KC, Bindslev-Jensen C, Casale TB, Chiriac A, Cruz AA, Dubakiene R, Durham SR, Fokkens WJ, Gerth-van-Wijk R, Kalayci O, Kowalski ML, Mari A, Mullol J, Nazamova-Baranova L, O'Hehir RE, Ohta K, Panzner P, Passalacqua G, Ring J, Rogala B, Romano A, Ryan D, Schmid-Grendelmeier P, Todo-Bom A, Valenta R, Woehrl S, Yusuf OM, Zuberbier T, Demoly P; Global Allergy and Asthma European Network; Allergic Rhinitis and its Impact on Asthma. Practical guide to skin prick tests in allergy to aeroallergens. Allergy. 2012 Jan;67(1):18-24. doi: 10.1111/j.1398-9995.2011.02728.x. Epub 2011 Nov 4.
Heinzerling LM, Burbach GJ, Edenharter G, Bachert C, Bindslev-Jensen C, Bonini S, Bousquet J, Bousquet-Rouanet L, Bousquet PJ, Bresciani M, Bruno A, Burney P, Canonica GW, Darsow U, Demoly P, Durham S, Fokkens WJ, Giavi S, Gjomarkaj M, Gramiccioni C, Haahtela T, Kowalski ML, Magyar P, Murakozi G, Orosz M, Papadopoulos NG, Rohnelt C, Stingl G, Todo-Bom A, Von Mutius E, Wiesner A, Wohrl S, Zuberbier T. GA(2)LEN skin test study I: GA(2)LEN harmonization of skin prick testing: novel sensitization patterns for inhalant allergens in Europe. Allergy. 2009 Oct;64(10):1498-1506. doi: 10.1111/j.1398-9995.2009.02093.x.
Horvath I, Barnes PJ, Loukides S, Sterk PJ, Hogman M, Olin AC, Amann A, Antus B, Baraldi E, Bikov A, Boots AW, Bos LD, Brinkman P, Bucca C, Carpagnano GE, Corradi M, Cristescu S, de Jongste JC, Dinh-Xuan AT, Dompeling E, Fens N, Fowler S, Hohlfeld JM, Holz O, Jobsis Q, Van De Kant K, Knobel HH, Kostikas K, Lehtimaki L, Lundberg J, Montuschi P, Van Muylem A, Pennazza G, Reinhold P, Ricciardolo FLM, Rosias P, Santonico M, van der Schee MP, van Schooten FJ, Spanevello A, Tonia T, Vink TJ. A European Respiratory Society technical standard: exhaled biomarkers in lung disease. Eur Respir J. 2017 Apr 26;49(4):1600965. doi: 10.1183/13993003.00965-2016. Print 2017 Apr.
American Thoracic Society; European Respiratory Society. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am J Respir Crit Care Med. 2005 Apr 15;171(8):912-30. doi: 10.1164/rccm.200406-710ST. No abstract available.
Coates AL, Wanger J, Cockcroft DW, Culver BH; Bronchoprovocation Testing Task Force: Kai-Hakon Carlsen; Diamant Z, Gauvreau G, Hall GL, Hallstrand TS, Horvath I, de Jongh FHC, Joos G, Kaminsky DA, Laube BL, Leuppi JD, Sterk PJ. ERS technical standard on bronchial challenge testing: general considerations and performance of methacholine challenge tests. Eur Respir J. 2017 May 1;49(5):1601526. doi: 10.1183/13993003.01526-2016. Print 2017 May.
Miller MR, Crapo R, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Enright P, van der Grinten CP, Gustafsson P, Jensen R, Johnson DC, MacIntyre N, McKay R, Navajas D, Pedersen OF, Pellegrino R, Viegi G, Wanger J; ATS/ERS Task Force. General considerations for lung function testing. Eur Respir J. 2005 Jul;26(1):153-61. doi: 10.1183/09031936.05.00034505. No abstract available.
Bulathsinhala L, Eleangovan N, Heaney LG, Menzies-Gow A, Gibson PG, Peters M, Hew M, van Boven JFM, Lehtimaki L, van Ganse E, Belhassen M, Harvey ES, Perez de Llano L, Maitland-van der Zee AH, Papadopoulos NG, FitzGerald JM, Porsbjerg C, Canonica GW, Backer V, Rhee CK, Verhamme KMC, Buhl R, Cosio BG, Carter V, Price C, Le T, Stagno d'Alcontres M, Gopalan G, Tran TN, Price D. Development of the International Severe Asthma Registry (ISAR): A Modified Delphi Study. J Allergy Clin Immunol Pract. 2019 Feb;7(2):578-588.e2. doi: 10.1016/j.jaip.2018.08.016. Epub 2018 Sep 1.
Chung KF, Wenzel SE, Brozek JL, Bush A, Castro M, Sterk PJ, Adcock IM, Bateman ED, Bel EH, Bleecker ER, Boulet LP, Brightling C, Chanez P, Dahlen SE, Djukanovic R, Frey U, Gaga M, Gibson P, Hamid Q, Jajour NN, Mauad T, Sorkness RL, Teague WG. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur Respir J. 2014 Feb;43(2):343-73. doi: 10.1183/09031936.00202013. Epub 2013 Dec 12.
Fokkens WJ, Lund V, Bachert C, Mullol J, Bjermer L, Bousquet J, Canonica GW, Deneyer L, Desrosiers M, Diamant Z, Han J, Heffler E, Hopkins C, Jankowski R, Joos G, Knill A, Lee J, Lee SE, Marien G, Pugin B, Senior B, Seys SF, Hellings PW. EUFOREA consensus on biologics for CRSwNP with or without asthma. Allergy. 2019 Dec;74(12):2312-2319. doi: 10.1111/all.13875. Epub 2019 Jul 15.
Stevens WW, Schleimer RP, Kern RC. Chronic Rhinosinusitis with Nasal Polyps. J Allergy Clin Immunol Pract. 2016 Jul-Aug;4(4):565-72. doi: 10.1016/j.jaip.2016.04.012.
Moore WC, Bleecker ER, Curran-Everett D, Erzurum SC, Ameredes BT, Bacharier L, Calhoun WJ, Castro M, Chung KF, Clark MP, Dweik RA, Fitzpatrick AM, Gaston B, Hew M, Hussain I, Jarjour NN, Israel E, Levy BD, Murphy JR, Peters SP, Teague WG, Meyers DA, Busse WW, Wenzel SE; National Heart, Lung, Blood Institute's Severe Asthma Research Program. Characterization of the severe asthma phenotype by the National Heart, Lung, and Blood Institute's Severe Asthma Research Program. J Allergy Clin Immunol. 2007 Feb;119(2):405-13. doi: 10.1016/j.jaci.2006.11.639.
Porsbjerg C, Menzies-Gow A. Co-morbidities in severe asthma: Clinical impact and management. Respirology. 2017 May;22(4):651-661. doi: 10.1111/resp.13026. Epub 2017 Mar 22.
Radhakrishna N, Tay TR, Hore-Lacy F, Hoy R, Dabscheck E, Hew M. Profile of difficult to treat asthma patients referred for systematic assessment. Respir Med. 2016 Aug;117:166-73. doi: 10.1016/j.rmed.2016.06.012. Epub 2016 Jun 14.
Moore WC, Meyers DA, Wenzel SE, Teague WG, Li H, Li X, D'Agostino R Jr, Castro M, Curran-Everett D, Fitzpatrick AM, Gaston B, Jarjour NN, Sorkness R, Calhoun WJ, Chung KF, Comhair SA, Dweik RA, Israel E, Peters SP, Busse WW, Erzurum SC, Bleecker ER; National Heart, Lung, and Blood Institute's Severe Asthma Research Program. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med. 2010 Feb 15;181(4):315-23. doi: 10.1164/rccm.200906-0896OC. Epub 2009 Nov 5.
Shen HH, Du XF, Ying SM. [Comparison of Chinese guideline for asthma managment and prevention (2016 update) and global initiative for asthma (2017 update)]. Zhonghua Jie He He Hu Xi Za Zhi. 2018 Mar 12;41(3):166-168. doi: 10.3760/cma.j.issn.1001-0939.2018.03.003. No abstract available. Chinese.
Condreay L, Chiano M, Ortega H, Buchan N, Harris E, Bleecker ER, Thompson PJ, Humbert M, Gibson P, Yancey S, Ghosh S. No genetic association detected with mepolizumab efficacy in severe asthma. Respir Med. 2017 Nov;132:178-180. doi: 10.1016/j.rmed.2017.10.019. Epub 2017 Oct 26.
Flood-Page P, Menzies-Gow A, Phipps S, Ying S, Wangoo A, Ludwig MS, Barnes N, Robinson D, Kay AB. Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. J Clin Invest. 2003 Oct;112(7):1029-36. doi: 10.1172/JCI17974.
Przybyszowski M, Paciorek K, Zastrzezynska W, Gawlewicz-Mroczka A, Trojan-Krolikowska A, Orlowska A, Soja J, Pawlik W, Sladek K. Influence of omalizumab therapy on airway remodeling assessed with high-resolution computed tomography (HRCT) in severe allergic asthma patients. Adv Respir Med. 2018 Dec 30;86(6). doi: 10.5603/ARM.a2018.0046.
Samitas K, Delimpoura V, Zervas E, Gaga M. Anti-IgE treatment, airway inflammation and remodelling in severe allergic asthma: current knowledge and future perspectives. Eur Respir Rev. 2015 Dec;24(138):594-601. doi: 10.1183/16000617.00001715.
Gevaert P, Lang-Loidolt D, Lackner A, Stammberger H, Staudinger H, Van Zele T, Holtappels G, Tavernier J, van Cauwenberge P, Bachert C. Nasal IL-5 levels determine the response to anti-IL-5 treatment in patients with nasal polyps. J Allergy Clin Immunol. 2006 Nov;118(5):1133-41. doi: 10.1016/j.jaci.2006.05.031. Epub 2006 Sep 26.
Gevaert P, Calus L, Van Zele T, Blomme K, De Ruyck N, Bauters W, Hellings P, Brusselle G, De Bacquer D, van Cauwenberge P, Bachert C. Omalizumab is effective in allergic and nonallergic patients with nasal polyps and asthma. J Allergy Clin Immunol. 2013 Jan;131(1):110-6.e1. doi: 10.1016/j.jaci.2012.07.047. Epub 2012 Sep 27.
Farne HA, Wilson A, Powell C, Bax L, Milan SJ. Anti-IL5 therapies for asthma. Cochrane Database Syst Rev. 2017 Sep 21;9(9):CD010834. doi: 10.1002/14651858.CD010834.pub3.
MacDonald KM, Kavati A, Ortiz B, Alhossan A, Lee CS, Abraham I. Short- and long-term real-world effectiveness of omalizumab in severe allergic asthma: systematic review of 42 studies published 2008-2018. Expert Rev Clin Immunol. 2019 May;15(5):553-569. doi: 10.1080/1744666X.2019.1574571. Epub 2019 Feb 14.
Papathanassiou E, Loukides S, Bakakos P. Severe asthma: anti-IgE or anti-IL-5? Eur Clin Respir J. 2016 Nov 7;3:31813. doi: 10.3402/ecrj.v3.31813. eCollection 2016.
Ward C, Pais M, Bish R, Reid D, Feltis B, Johns D, Walters EH. Airway inflammation, basement membrane thickening and bronchial hyperresponsiveness in asthma. Thorax. 2002 Apr;57(4):309-16. doi: 10.1136/thorax.57.4.309.
Hsu J, Avila PC, Kern RC, Hayes MG, Schleimer RP, Pinto JM. Genetics of chronic rhinosinusitis: state of the field and directions forward. J Allergy Clin Immunol. 2013 Apr;131(4):977-93, 993.e1-5. doi: 10.1016/j.jaci.2013.01.028.
Chang EH, Willis AL, McCrary HC, Noutsios GT, Le CH, Chiu AG, Mansfield CJ, Reed DR, Brooks SG, Adappa ND, Palmer JN, Cohen NG, Stern DA, Guerra S, Martinez FD. Association between the CDHR3 rs6967330 risk allele and chronic rhinosinusitis. J Allergy Clin Immunol. 2017 Jun;139(6):1990-1992.e2. doi: 10.1016/j.jaci.2016.10.027. Epub 2016 Dec 3.
Kim B, Lee HJ, Im NR, Lee DY, Kim HK, Kang CY, Park IH, Lee SH, Lee HM, Lee SH, Baek SK, Kim TH. Decreased expression of CCL17 in the disrupted nasal polyp epithelium and its regulation by IL-4 and IL-5. PLoS One. 2018 May 10;13(5):e0197355. doi: 10.1371/journal.pone.0197355. eCollection 2018.
Kobayashi N, Terada N, Hamano N, Numata T, Konno A. Transepithelial migration of activated eosinophils induces a decrease of E-cadherin expression in cultured human nasal epithelial cells. Clin Exp Allergy. 2000 Jun;30(6):807-17. doi: 10.1046/j.1365-2222.2000.00827.x.
Steelant B, Seys SF, Van Gerven L, Van Woensel M, Farre R, Wawrzyniak P, Kortekaas Krohn I, Bullens DM, Talavera K, Raap U, Boon L, Akdis CA, Boeckxstaens G, Ceuppens JL, Hellings PW. Histamine and T helper cytokine-driven epithelial barrier dysfunction in allergic rhinitis. J Allergy Clin Immunol. 2018 Mar;141(3):951-963.e8. doi: 10.1016/j.jaci.2017.08.039. Epub 2017 Oct 23.
Hirschberg A, Jokuti A, Darvas Z, Almay K, Repassy G, Falus A. The pathogenesis of nasal polyposis by immunoglobulin E and interleukin-5 is completed by transforming growth factor-beta1. Laryngoscope. 2003 Jan;113(1):120-4. doi: 10.1097/00005537-200301000-00022.
Hakansson K, Bachert C, Konge L, Thomsen SF, Pedersen AE, Poulsen SS, Martin-Bertelsen T, Winther O, Backer V, von Buchwald C. Airway Inflammation in Chronic Rhinosinusitis with Nasal Polyps and Asthma: The United Airways Concept Further Supported. PLoS One. 2015 Jul 1;10(7):e0127228. doi: 10.1371/journal.pone.0127228. eCollection 2015.
Meng J, Zhou P, Liu Y, Liu F, Yi X, Liu S, Holtappels G, Bachert C, Zhang N. The development of nasal polyp disease involves early nasal mucosal inflammation and remodelling. PLoS One. 2013 Dec 10;8(12):e82373. doi: 10.1371/journal.pone.0082373. eCollection 2013.
Tieu DD, Kern RC, Schleimer RP. Alterations in epithelial barrier function and host defense responses in chronic rhinosinusitis. J Allergy Clin Immunol. 2009 Jul;124(1):37-42. doi: 10.1016/j.jaci.2009.04.045.
London NR Jr, Lane AP. Innate immunity and chronic rhinosinusitis: What we have learned from animal models. Laryngoscope Investig Otolaryngol. 2016 Jun;1(3):49-56. doi: 10.1002/lio2.21. Epub 2016 Jun 10.
Van Zele T, Claeys S, Gevaert P, Van Maele G, Holtappels G, Van Cauwenberge P, Bachert C. Differentiation of chronic sinus diseases by measurement of inflammatory mediators. Allergy. 2006 Nov;61(11):1280-9. doi: 10.1111/j.1398-9995.2006.01225.x.
Van Bruaene N, Perez-Novo CA, Basinski TM, Van Zele T, Holtappels G, De Ruyck N, Schmidt-Weber C, Akdis C, Van Cauwenberge P, Bachert C, Gevaert P. T-cell regulation in chronic paranasal sinus disease. J Allergy Clin Immunol. 2008 Jun;121(6):1435-41, 1441.e1-3. doi: 10.1016/j.jaci.2008.02.018.
Terzakis D, Georgalas C. Polyps, asthma, and allergy: what's new. Curr Opin Otolaryngol Head Neck Surg. 2017 Feb;25(1):12-18. doi: 10.1097/MOO.0000000000000323.
Jones AC, Troy NM, White E, Hollams EM, Gout AM, Ling KM, Kicic A, Stick SM, Sly PD, Holt PG, Hall GL, Bosco A. Persistent activation of interlinked type 2 airway epithelial gene networks in sputum-derived cells from aeroallergen-sensitized symptomatic asthmatics. Sci Rep. 2018 Jan 24;8(1):1511. doi: 10.1038/s41598-018-19837-6.
Kanazawa J, Masuko H, Yatagai Y, Sakamoto T, Yamada H, Kaneko Y, Kitazawa H, Iijima H, Naito T, Saito T, Noguchi E, Konno S, Nishimura M, Hirota T, Tamari M, Hizawa N. Genetic association of the functional CDHR3 genotype with early-onset adult asthma in Japanese populations. Allergol Int. 2017 Oct;66(4):563-567. doi: 10.1016/j.alit.2017.02.012. Epub 2017 Mar 17.
Bonnelykke K, Sleiman P, Nielsen K, Kreiner-Moller E, Mercader JM, Belgrave D, den Dekker HT, Husby A, Sevelsted A, Faura-Tellez G, Mortensen LJ, Paternoster L, Flaaten R, Molgaard A, Smart DE, Thomsen PF, Rasmussen MA, Bonas-Guarch S, Holst C, Nohr EA, Yadav R, March ME, Blicher T, Lackie PM, Jaddoe VW, Simpson A, Holloway JW, Duijts L, Custovic A, Davies DE, Torrents D, Gupta R, Hollegaard MV, Hougaard DM, Hakonarson H, Bisgaard H. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations. Nat Genet. 2014 Jan;46(1):51-5. doi: 10.1038/ng.2830. Epub 2013 Nov 17.
Koppelman GH, Meyers DA, Howard TD, Zheng SL, Hawkins GA, Ampleford EJ, Xu J, Koning H, Bruinenberg M, Nolte IM, van Diemen CC, Boezen HM, Timens W, Whittaker PA, Stine OC, Barton SJ, Holloway JW, Holgate ST, Graves PE, Martinez FD, van Oosterhout AJ, Bleecker ER, Postma DS. Identification of PCDH1 as a novel susceptibility gene for bronchial hyperresponsiveness. Am J Respir Crit Care Med. 2009 Nov 15;180(10):929-35. doi: 10.1164/rccm.200810-1621OC. Epub 2009 Sep 3.
Kozu Y, Gon Y, Maruoka S, Kazumichi K, Sekiyama A, Kishi H, Nomura Y, Ikeda M, Hashimoto S. Protocadherin-1 is a glucocorticoid-responsive critical regulator of airway epithelial barrier function. BMC Pulm Med. 2015 Jul 31;15:80. doi: 10.1186/s12890-015-0078-z.
Post S, Heijink IH, Hesse L, Koo HK, Shaheen F, Fouadi M, Kuchibhotla VNS, Lambrecht BN, Van Oosterhout AJM, Hackett TL, Nawijn MC. Characterization of a lung epithelium specific E-cadherin knock-out model: Implications for obstructive lung pathology. Sci Rep. 2018 Sep 5;8(1):13275. doi: 10.1038/s41598-018-31500-8.
Masuyama K, Morishima Y, Ishii Y, Nomura A, Sakamoto T, Kimura T, Mochizuki M, Uchida Y, Sekizawa K. Sputum E-cadherin and asthma severity. J Allergy Clin Immunol. 2003 Jul;112(1):208-9. doi: 10.1067/mai.2003.1526. No abstract available.
Ierodiakonou D, Postma DS, Koppelman GH, Boezen HM, Gerritsen J, Ten Hacken N, Timens W, Vonk JM. E-cadherin gene polymorphisms in asthma patients using inhaled corticosteroids. Eur Respir J. 2011 Nov;38(5):1044-52. doi: 10.1183/09031936.00194710. Epub 2011 May 3.
Wang MF, Kuo SH, Huang CH, Chen YJ, Lin SH, Lee CJ, Lue KH, Wu SC, Cho CY, Wong RH. Exposure to environmental tobacco smoke, human E-cadherin C-160A polymorphism, and childhood asthma. Ann Allergy Asthma Immunol. 2013 Oct;111(4):262-7. doi: 10.1016/j.anai.2013.07.008. Epub 2013 Aug 2.
Fitzpatrick AM, Moore WC. Severe Asthma Phenotypes - How Should They Guide Evaluation and Treatment? J Allergy Clin Immunol Pract. 2017 Jul-Aug;5(4):901-908. doi: 10.1016/j.jaip.2017.05.015.
Rasmussen F, Taylor DR, Flannery EM, Cowan JO, Greene JM, Herbison GP, Sears MR. Risk factors for airway remodeling in asthma manifested by a low postbronchodilator FEV1/vital capacity ratio: a longitudinal population study from childhood to adulthood. Am J Respir Crit Care Med. 2002 Jun 1;165(11):1480-8. doi: 10.1164/rccm.2108009.
Chae EJ, Kim TB, Cho YS, Park CS, Seo JB, Kim N, Moon HB. Airway Measurement for Airway Remodeling Defined by Post-Bronchodilator FEV1/FVC in Asthma: Investigation Using Inspiration-Expiration Computed Tomography. Allergy Asthma Immunol Res. 2011 Apr;3(2):111-7. doi: 10.4168/aair.2011.3.2.111. Epub 2010 Dec 1.
Inoue H, Ito I, Niimi A, Matsumoto H, Matsuoka H, Jinnai M, Takeda T, Oguma T, Otsuka K, Nakaji H, Tajiri T, Iwata T, Nagasaki T, Kanemitsu Y, Mishima M. CT-assessed large airway involvement and lung function decline in eosinophilic asthma: The association between induced sputum eosinophil differential counts and airway remodeling. J Asthma. 2016 Nov;53(9):914-21. doi: 10.3109/02770903.2016.1167903. Epub 2016 Apr 26.
Saglani S, Lloyd CM. Novel concepts in airway inflammation and remodelling in asthma. Eur Respir J. 2015 Dec;46(6):1796-804. doi: 10.1183/13993003.01196-2014. Epub 2015 Nov 5.
Castro-Rodriguez JA, Saglani S, Rodriguez-Martinez CE, Oyarzun MA, Fleming L, Bush A. The relationship between inflammation and remodeling in childhood asthma: A systematic review. Pediatr Pulmonol. 2018 Jun;53(6):824-835. doi: 10.1002/ppul.23968. Epub 2018 Feb 22.
Davies DE. Epithelial barrier function and immunity in asthma. Ann Am Thorac Soc. 2014 Dec;11 Suppl 5:S244-51. doi: 10.1513/AnnalsATS.201407-304AW.
Holgate ST. Epithelium dysfunction in asthma. J Allergy Clin Immunol. 2007 Dec;120(6):1233-44; quiz 1245-6. doi: 10.1016/j.jaci.2007.10.025.
Laitinen LA, Heino M, Laitinen A, Kava T, Haahtela T. Damage of the airway epithelium and bronchial reactivity in patients with asthma. Am Rev Respir Dis. 1985 Apr;131(4):599-606. doi: 10.1164/arrd.1985.131.4.599.
Qin L, Gibson PG, Simpson JL, Baines KJ, McDonald VM, Wood LG, Powell H, Fricker M. Dysregulation of sputum columnar epithelial cells and products in distinct asthma phenotypes. Clin Exp Allergy. 2019 Nov;49(11):1418-1428. doi: 10.1111/cea.13452. Epub 2019 Aug 6.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
10961[213755]
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.