Effectiveness of MR-guided LITT Therapy in Irresectable Glioblastoma (EMITT)
NCT ID: NCT05318612
Last Updated: 2024-04-10
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
ACTIVE_NOT_RECRUITING
PHASE3
238 participants
INTERVENTIONAL
2022-04-08
2027-10-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
The current treatment of glioblastoma consists of maximal safe surgery combined with adjuvant chemoradiation therapy (CRT). However, despite this aggressive treatment, these patients still face a poor prognosis (median overall survival 14.5 - 18.5 months). In addition to that, around 30% of the patients diagnosed with a glioblastoma are not suitable for surgery. These patients miss the benefit of a resection and face an even worse prognosis (median overall survival 5.1 months).
The primary aim of this project is to investigate whether laser therapy combined with CRT improves overall survival, without compromising quality of life, in comparison with CRT alone in patients with primary irresectable glioblastoma.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
MR-guided LITT Therapy in Patients With Primary Irresectable Glioblastoma
NCT04596930
MRI-Guided Laser Induced Thermal Therapy
NCT01515085
MR Guided Laser Interstitial Thermal Therapy for the "Minimal Invasive" Treatment of Brain Metastasis and Primary Brain Tumors
NCT00392119
LITT Combined With Early Use of Temozolomide for Recurrent Glioblastomas
NCT05663125
Feasibility Study on LITT for Newly Diagnosed Glioblastoma
NCT02880410
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
OBJECTIVE: The primary objective is to prove an improvement in survival without substantially compromising quality-of-life (QoL) in patients with primary irresectable glioblastoma (GBM) treated with LITT plus chemoradiation therapy (CRT) vs. CRT alone.
STUDY DESIGN: Prospective multicenter randomized controlled trial. Study population: Adult (\>18 years old) patients with a radiologically suspected diagnosis of primary glioblastoma not amenable for surgical resection.
INTERVENTION: Patients will be randomized to receive either (i) biopsy and LITT, followed by standard CRT or (ii) biopsy alone, followed by standard CRT.
MAIN STUDY PARAMETERS/ENDPOINTS: The primary endpoints are overall survival (OS) and quality-of-life (QoL) using QLQ-C30+BN20 questionnaire 5 months after randomization.
Secondary endpoints are disease-specific and progression-free survival (PFS), generic QoL using EQ5D-5L and QLQ-C30+BN20, complication rates, tumor volume response, effects on adjuvant treatment and costs.
NATURE AND EXTENT OF THE BURDER AND RISKS ASSOCIATED WITH PARTICIPATION, BENEFIT AND GROUP RELATEDNESS: We hypothesize that the addition of LITT provides patients with an irresectable glioblastoma a relevant survival benefit without compromising their quality of life as compared to current standard treatment. LITT has been shown to carry limited risk of post-operative complications, mostly reversible, and has been associated with fast recovery post-treatment. The main risks associated to the procedure are bleeding, brain edema, neurological deterioration, operation site infection, epilepsy. The results of our near-finished pilot study are showing that the procedure seems to be safe and feasible.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Control group (biopsy group)
Standard of care: biopsy + adjuvant treatment
Biopsy
A sample of tissue from the tumor is obtained to confirm the diagnosis.
Intervention group (LITT group)
Biopsy + LITT + adjuvant treatment
Laser Interstitial Thermal Therapy (LITT)
LITT is a minimally invasive neurosurgical procedure in which a laser catheter is placed into the tumor and warms the tumor to such an extent that tumor tissue is destroyed. LITT is performed under MR-guidance.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Laser Interstitial Thermal Therapy (LITT)
LITT is a minimally invasive neurosurgical procedure in which a laser catheter is placed into the tumor and warms the tumor to such an extent that tumor tissue is destroyed. LITT is performed under MR-guidance.
Biopsy
A sample of tissue from the tumor is obtained to confirm the diagnosis.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Suspected glioblastoma
* Supratentorial localization
* Patient is not amendable for surgical resection as decided by the tumor board
* Safe trajectory/trajectories possible for ablation of at least 70% of the tumor, avoiding eloquent structures
* Karnofsky Performance Status (KPS) \>=70
Exclusion Criteria
* Non-glioblastoma diagnosis on pathology analysis
* No final pathology available
* Pregnancy
* Insufficient command of the Dutch language by the patient or a family member, making it impossible to fill in the questionnaires
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Dutch National Health Care Institute
OTHER
ZonMw: The Netherlands Organisation for Health Research and Development
OTHER
UMC Utrecht
OTHER
Radboud University Medical Center
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Mark ter Laan, MD, PhD
Role: PRINCIPAL_INVESTIGATOR
Radboud University Medical Center
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Amsterdam Medical Center
Amsterdam, , Netherlands
University Medical Center Groningen
Groningen, , Netherlands
Maastricht University Medical Center
Maastricht, , Netherlands
Radboud University Medical Center
Nijmegen, , Netherlands
Erasmus Medical Center
Rotterdam, , Netherlands
Elisabeth Tweesteden Ziekenhuis
Tilburg, , Netherlands
University Medical Center Utrecht
Utrecht, , Netherlands
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Incidentie Hersentumoren. IKNL. https://www.iknl.nl/kankersoorten/hersentumoren/registratie/incidentie. Accessed October 7, 2020.
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015 Jan-Feb;65(1):5-29. doi: 10.3322/caac.21254. Epub 2015 Jan 5.
Rouse C, Gittleman H, Ostrom QT, Kruchko C, Barnholtz-Sloan JS. Years of potential life lost for brain and CNS tumors relative to other cancers in adults in the United States, 2010. Neuro Oncol. 2016 Jan;18(1):70-7. doi: 10.1093/neuonc/nov249. Epub 2015 Oct 12.
Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO; European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005 Mar 10;352(10):987-96. doi: 10.1056/NEJMoa043330.
Weller M, van den Bent M, Hopkins K, Tonn JC, Stupp R, Falini A, Cohen-Jonathan-Moyal E, Frappaz D, Henriksson R, Balana C, Chinot O, Ram Z, Reifenberger G, Soffietti R, Wick W; European Association for Neuro-Oncology (EANO) Task Force on Malignant Glioma. EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. Lancet Oncol. 2014 Aug;15(9):e395-403. doi: 10.1016/S1470-2045(14)70011-7.
Brown TJ, Brennan MC, Li M, Church EW, Brandmeir NJ, Rakszawski KL, Patel AS, Rizk EB, Suki D, Sawaya R, Glantz M. Association of the Extent of Resection With Survival in Glioblastoma: A Systematic Review and Meta-analysis. JAMA Oncol. 2016 Nov 1;2(11):1460-1469. doi: 10.1001/jamaoncol.2016.1373.
De Witt Hamer PC, Ho VKY, Zwinderman AH, Ackermans L, Ardon H, Boomstra S, Bouwknegt W, van den Brink WA, Dirven CM, van der Gaag NA, van der Veer O, Idema AJS, Kloet A, Koopmans J, Ter Laan M, Verstegen MJT, Wagemakers M, Robe PAJT; Quality Registry Neuro Surgery glioblastoma working group from the Dutch Society of Neurosurgery. Between-hospital variation in mortality and survival after glioblastoma surgery in the Dutch Quality Registry for Neuro Surgery. J Neurooncol. 2019 Sep;144(2):313-323. doi: 10.1007/s11060-019-03229-5. Epub 2019 Jun 24.
Haj A, Doenitz C, Schebesch KM, Ehrensberger D, Hau P, Putnik K, Riemenschneider MJ, Wendl C, Gerken M, Pukrop T, Brawanski A, Proescholdt MA. Extent of Resection in Newly Diagnosed Glioblastoma: Impact of a Specialized Neuro-Oncology Care Center. Brain Sci. 2017 Dec 25;8(1):5. doi: 10.3390/brainsci8010005.
Ashraf O, Patel NV, Hanft S, Danish SF. Laser-Induced Thermal Therapy in Neuro-Oncology: A Review. World Neurosurg. 2018 Apr;112:166-177. doi: 10.1016/j.wneu.2018.01.123. Epub 2018 Feb 2.
Viozzi I, Guberinic A, Overduin CG, Rovers MM, Ter Laan M. Laser Interstitial Thermal Therapy in Patients with Newly Diagnosed Glioblastoma: A Systematic Review. J Clin Med. 2021 Jan 19;10(2):355. doi: 10.3390/jcm10020355.
Williams D, Loshak H. Laser Interstitial Thermal Therapy for Epilepsy and/or Brain Tumours: A Review of Clinical Effectiveness and Cost-Effectiveness [Internet]. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health; 2019 Jun 17. Available from http://www.ncbi.nlm.nih.gov/books/NBK545597/
Weller M, van den Bent M, Preusser M, Le Rhun E, Tonn JC, Minniti G, Bendszus M, Balana C, Chinot O, Dirven L, French P, Hegi ME, Jakola AS, Platten M, Roth P, Ruda R, Short S, Smits M, Taphoorn MJB, von Deimling A, Westphal M, Soffietti R, Reifenberger G, Wick W. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol. 2021 Mar;18(3):170-186. doi: 10.1038/s41571-020-00447-z. Epub 2020 Dec 8.
Maringwa J, Quinten C, King M, Ringash J, Osoba D, Coens C, Martinelli F, Reeve BB, Gotay C, Greimel E, Flechtner H, Cleeland CS, Schmucker-Von Koch J, Weis J, Van Den Bent MJ, Stupp R, Taphoorn MJ, Bottomley A; EORTC PROBE Project and Brain Cancer Group. Minimal clinically meaningful differences for the EORTC QLQ-C30 and EORTC QLQ-BN20 scales in brain cancer patients. Ann Oncol. 2011 Sep;22(9):2107-2112. doi: 10.1093/annonc/mdq726. Epub 2011 Feb 15.
Taphoorn MJ, Stupp R, Coens C, Osoba D, Kortmann R, van den Bent MJ, Mason W, Mirimanoff RO, Baumert BG, Eisenhauer E, Forsyth P, Bottomley A; European Organisation for Research and Treatment of Cancer Brain Tumour Group; EORTC Radiotherapy Group; National Cancer Institute of Canada Clinical Trials Group. Health-related quality of life in patients with glioblastoma: a randomised controlled trial. Lancet Oncol. 2005 Dec;6(12):937-44. doi: 10.1016/S1470-2045(05)70432-0.
Garside R, Pitt M, Anderson R, Rogers G, Dyer M, Mealing S, Somerville M, Price A, Stein K. The effectiveness and cost-effectiveness of carmustine implants and temozolomide for the treatment of newly diagnosed high-grade glioma: a systematic review and economic evaluation. Health Technol Assess. 2007 Nov;11(45):iii-iv, ix-221. doi: 10.3310/hta11450.
Medvid R, Ruiz A, Komotar RJ, Jagid JR, Ivan ME, Quencer RM, Desai MB. Current Applications of MRI-Guided Laser Interstitial Thermal Therapy in the Treatment of Brain Neoplasms and Epilepsy: A Radiologic and Neurosurgical Overview. AJNR Am J Neuroradiol. 2015 Nov;36(11):1998-2006. doi: 10.3174/ajnr.A4362. Epub 2015 Jun 25.
McDannold NJ, Jolesz FA. Magnetic resonance image-guided thermal ablations. Top Magn Reson Imaging. 2000 Jun;11(3):191-202. doi: 10.1097/00002142-200006000-00005.
Leuthardt EC, Duan C, Kim MJ, Campian JL, Kim AH, Miller-Thomas MM, Shimony JS, Tran DD. Hyperthermic Laser Ablation of Recurrent Glioblastoma Leads to Temporary Disruption of the Peritumoral Blood Brain Barrier. PLoS One. 2016 Feb 24;11(2):e0148613. doi: 10.1371/journal.pone.0148613. eCollection 2016.
Mohammadi AM, Hawasli AH, Rodriguez A, Schroeder JL, Laxton AW, Elson P, Tatter SB, Barnett GH, Leuthardt EC. The role of laser interstitial thermal therapy in enhancing progression-free survival of difficult-to-access high-grade gliomas: a multicenter study. Cancer Med. 2014 Aug;3(4):971-9. doi: 10.1002/cam4.266. Epub 2014 May 9.
Ahluwalia M, Barnett GH, Deng D, Tatter SB, Laxton AW, Mohammadi AM, Leuthardt E, Chamoun R, Judy K, Asher A, Essig M, Dietrich J, Chiang VL. Laser ablation after stereotactic radiosurgery: a multicenter prospective study in patients with metastatic brain tumors and radiation necrosis. J Neurosurg. 2019 Mar 1;130(3):804-811. doi: 10.3171/2017.11.JNS171273. Epub 2018 May 4.
Rennert RC, Khan U, Bartek J, Tatter SB, Field M, Toyota B, Fecci PE, Judy K, Mohammadi AM, Landazuri P, Sloan AE, Kim AH, Leuthardt EC, Chen CC. Laser Ablation of Abnormal Neurological Tissue Using Robotic Neuroblate System (LAANTERN): Procedural Safety and Hospitalization. Neurosurgery. 2020 Apr 1;86(4):538-547. doi: 10.1093/neuros/nyz141.
Cabantog AM, Bernstein M. Complications of first craniotomy for intra-axial brain tumour. Can J Neurol Sci. 1994 Aug;21(3):213-8. doi: 10.1017/s0317167100041184.
Patel P, Patel NV, Danish SF. Intracranial MR-guided laser-induced thermal therapy: single-center experience with the Visualase thermal therapy system. J Neurosurg. 2016 Oct;125(4):853-860. doi: 10.3171/2015.7.JNS15244. Epub 2016 Jan 1.
Hawasli AH, Bagade S, Shimony JS, Miller-Thomas M, Leuthardt EC. Magnetic resonance imaging-guided focused laser interstitial thermal therapy for intracranial lesions: single-institution series. Neurosurgery. 2013 Dec;73(6):1007-17. doi: 10.1227/NEU.0000000000000144.
Stef van Buuren KG-O. mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software 2011; Volume 45(issue 3)
S vB. Flexible imputation of missing data, second edition: Boca Raton; 2008.
Carreras G, Miccinesi G, Wilcock A, Preston N, Nieboer D, Deliens L, Groenvold M, Lunder U, van der Heide A, Baccini M; ACTION consortium. Missing not at random in end of life care studies: multiple imputation and sensitivity analysis on data from the ACTION study. BMC Med Res Methodol. 2021 Jan 9;21(1):13. doi: 10.1186/s12874-020-01180-y.
Kamath AA, Friedman DD, Hacker CD, Smyth MD, Limbrick DD Jr, Kim AH, Hawasli AH, Leuthardt EC. MRI-Guided Interstitial Laser Ablation for Intracranial Lesions: A Large Single-Institution Experience of 133 Cases. Stereotact Funct Neurosurg. 2017;95(6):417-428. doi: 10.1159/000485387. Epub 2018 Jan 17.
Riche M, Amelot A, Peyre M, Capelle L, Carpentier A, Mathon B. Complications after frame-based stereotactic brain biopsy: a systematic review. Neurosurg Rev. 2021 Feb;44(1):301-307. doi: 10.1007/s10143-019-01234-w. Epub 2020 Jan 4.
Jackson C, Westphal M, Quinones-Hinojosa A. Complications of glioma surgery. Handb Clin Neurol. 2016;134:201-18. doi: 10.1016/B978-0-12-802997-8.00012-8.
Rahmathulla G, Recinos PF, Kamian K, Mohammadi AM, Ahluwalia MS, Barnett GH. MRI-guided laser interstitial thermal therapy in neuro-oncology: a review of its current clinical applications. Oncology. 2014;87(2):67-82. doi: 10.1159/000362817. Epub 2014 Jul 3.
Franck P, Henderson PW, Rothaus KO. Basics of Lasers: History, Physics, and Clinical Applications. Clin Plast Surg. 2016 Jul;43(3):505-13. doi: 10.1016/j.cps.2016.03.007.
Di L, Wang CP, Shah AH, Eichberg DG, Semonche AM, Sanjurjo AD, Luther EM, Jermakowicz WJ, Komotar RJ, Ivan ME. A Cohort Study on Prognostic Factors for Laser Interstitial Thermal Therapy Success in Newly Diagnosed Glioblastoma. Neurosurgery. 2021 Aug 16;89(3):496-503. doi: 10.1093/neuros/nyab193.
Patel NV, Jethwa PR, Shetty A, Danish SF. Does the real-time thermal damage estimate allow for estimation of tumor control after MRI-guided laser-induced thermal therapy? Initial experience with recurrent intracranial ependymomas. J Neurosurg Pediatr. 2015 Apr;15(4):363-71. doi: 10.3171/2014.10.PEDS13698. Epub 2015 Jan 16.
Nakagawa M, Matsumoto K, Higashi H, Furuta T, Ohmoto T. Acute effects of interstitial hyperthermia on normal monkey brain--magnetic resonance imaging appearance and effects on blood-brain barrier. Neurol Med Chir (Tokyo). 1994 Oct;34(10):668-75. doi: 10.2176/nmc.34.668.
Rieke V, Butts Pauly K. MR thermometry. J Magn Reson Imaging. 2008 Feb;27(2):376-90. doi: 10.1002/jmri.21265.
Neutel CLG, Viozzi I, Overduin CG, Rijpma A, Grutters JPC, Hannink G, van Eijsden P, Robe PA, Rovers MM, Ter Laan M. Study protocol for a multicenter randomised controlled trial on the (cost)effectiveness of biopsy combined with same-session MR-guided LITT versus biopsy alone in patients with primary irresectable glioblastoma (EMITT trial). BMC Cancer. 2023 Aug 23;23(1):788. doi: 10.1186/s12885-023-11282-7.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
NL79202.091.21
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.