Giessen Stroke Registry

NCT ID: NCT05295862

Last Updated: 2023-12-01

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

RECRUITING

Total Enrollment

2000 participants

Study Classification

OBSERVATIONAL

Study Start Date

2023-11-30

Study Completion Date

2027-12-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The aim of the planned study project is to assess the current situation regarding the treatment of patients with stroke. Specifically, various treatment strategies are to be associated and correlated with clinical endpoints, mortality or functional outcome in order to generate arguments for or against individual aspects of therapy. The focus will be on unresolved treatment approaches in acute therapy (e.g. periprocedural management, such as blood pressure, blood glucose, temperature, or airway management, during recanalizing therapies) as well as in secondary prevention on the stroke unit or intensive care unit, such as starting point, mode, and dosage of antithrombotic therapies.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Stroke is the second leading cause of death worldwide as well as the most common cause of permanent disability (Baron 1999).

In the acute phase of ischemic cerebral infarction, the goal of therapy is the rapid reopening of the occluded vessel. This should restore blood flow to the inferiorly supplied brain tissue surrounding the infarct core, the penumbra, and limit the extent of the irreversibly damaged infarct core (Astrup 1981). According to the current guidelines for acute therapy of ischemic stroke, thrombolysis with recombinant tissue-type plasminogen activator (rt-PA) can be performed within the first 4.5 hours after symptom onset (Ringleb 2015). The safety and efficacy of this therapy is considered proven (Hacke 2008, Wahlgren 2008). Outside this "time window", the incidence of bleeding complications increases.

In recent years, the efficacy of interventional reopening of an occluded vessel in combination with rt-PA or without rt-PA has additionally been demonstrated. Since the publication of the results of the landmark studies on thrombectomy (MR-CLEAN \[Berkhemer 2014\] ESCAPE \[Goyal 2015\], EXTEND-IA \[Campbell 2015\], SWIFT-PRIME \[Saver 2015\], REVASCAT \[Jovin 2015\]) in 2016 and a meta-analysis of these studies (Goyal 2016), this therapy is widely used in specialized centers. This intervention is also available outside the 4.5-hour time window when specialized imaging is used to visualize potentially salvageable brain tissue and thus patient selection. This can be done using perfusion imaging in computed tomography (CT) or magnetic resonance imaging (MRI). Here, a difference ("mismatch") between cerebral regional blood flow (CBF) and cerebral regional blood volume (CBV) represents potentially salvageable tissue (CBV/CBF mismatch). Similarly, structural brain imaging with MRI cannot yet detect irreversibly damaged tissue, as diffusion-weighted sequences show ischemia shortly after symptom onset, but fluid attenuated inversion recovery (FLAIR) sequences show ischemia after 4-6 hours (DWI-FLAIR mismatch). Also, salvageable tissue can be assumed in the presence of largely unremarkable imaging and high disease severity (clinical-imaging mismatch). Considering the risk of bleeding in larger already demarcated infarcts, systemic intravenous thrombolysis can also be added if necessary. In all mismatch situations, superiority of thrombolysis and thrombectomy has recently been demonstrated (Barow 2019).

The cornerstone of stroke therapy is the stroke unit concept. Diagnostics, acute therapy, secondary prophylaxis, and early rehabilitation treatment are coordinated in a specialized stroke unit. Depending on the hospital structure, acute diagnosis and therapy may also take place in an emergency room facility. The stroke unit concept is based on structured, interdisciplinary collaboration between neurologists, neuroradiologists, internists, neurosurgeons, speech therapists, occupational and physical therapists, nursing staff and the emergency medical services. Treatment in such a stroke unit alone reduces mortality by 18-46 percent relatively (3 percent absolutely), the risk of functional dependence by 29 percent, and the need for nursing home care or total home care by 25 percent (Stroke Unit Trialists Collaboration 2007). Key mechanisms of action appear to include careful adjustment of vital signs. Deviations in body temperature, blood glucose, and blood pressure lead to worse clinical outcomes (Sandercock 2008, Langhorne 2002, Sobesky 2009). In addition, patients should be screened early for dysphagia, i.e., swallowing disorders, and nutrition should be adjusted, which is a mandatory measure on stroke units (Sobesky 2009).

The background of the planned project is that although there has been an enormous increase in knowledge in the treatment of stroke patients in recent years based on prospective randomized trials (especially the establishment of thrombectomy in the acute phase as well as pioneering therapies in secondary prevention, e.g., treatment of patients with atrial fibrillation or persistent foramen ovale), many questions in the everyday practical implementation of these study results remain unresolved.

The aim of this research project is to generate new evidence for or against common treatment algorithms in fields where no randomized data are available. Among other things, it will be analyzed to what extent different preclinical algorithms (e.g., drip-and-ship management (i.e., secondary transfer of acutely ill patients from external hospitals to a center for thrombectomy), intraclinical treatment pathways, and early management on stroke units and intensive care units affect outcomerelevant parameters. The overall aim is to improve the current level of evidence on the management of stroke patients by analyzing a large database of individualized patient data.

The aim of the present - noninterventional and purely descriptive - project is to record treatment parameters of consecutive patients with stroke and to correlate them with clinical end points.

Specifically, a retrospective evaluation of patients who were hospitalized at the Department of Neurology due to stroke between the years 2018 and 2020 will be performed first. Specifically, it is planned to first identify these patients through a controlling query. Subsequently, various clinical parameters from the routine acute phase will be collected by reviewing the in-house electronic data systems. Aspects of data protection will be observed according to the local institutional guidelines. In order to analyze the outcome of the patients, contact will be made by means of a written questionnaire sent by mail, and subsequently, if necessary, by a telephone call. By providing the enclosed patient information and patient consent, the patient or legal guardian gives consent (or refusal) to the partial aspect of the telephone interview for the purpose of recording long-term outcome. . Patients who are deceased or cannot be reached will be included in the database without recording long-term outcome. Here, no clarification is provided.

In a second step, emerging aspects and treatment approaches resulting from the exploratory data analysis will also be recorded prospectively in the sense of a continuous expansion of the registry. If new approaches arise for the routine care of patients, such as adjustment of treatment algorithms, these can be evaluated first. Depending on the question, it may also be necessary to extend the period for retrospective evaluation of routine data in order to obtain a sufficient number of cases; in this case, the ethics committee will be informed.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Stroke, Acute Comorbidities and Coexisting Conditions Critical Care

Keywords

Explore important study keywords that can help with search, categorization, and topic discovery.

Acute Stroke Comorbidities Clinical Management

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

COHORT

Study Time Perspective

OTHER

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Age above 18
* Patient admitted for acute stroke (Stroke Unit or Intensive Care Unit)
* Informed Consent
Minimum Eligible Age

18 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

University of Giessen

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Tobias Braun

Senior Physician

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Tobias Braun, M.D.

Role: PRINCIPAL_INVESTIGATOR

University of Giessen

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Universitätsklinikum Gießen

Giessen, Hesse, Germany

Site Status RECRUITING

Countries

Review the countries where the study has at least one active or historical site.

Germany

Central Contacts

Reach out to these primary contacts for questions about participation or study logistics.

Tobias Braun, M.D.

Role: CONTACT

Phone: +49641-985

Email: [email protected]

Martin Juenemann, M.D., M.Sc.

Role: CONTACT

Phone: +49641-985

Email: [email protected]

Facility Contacts

Find local site contact details for specific facilities participating in the trial.

Tobias Braun, M.D.

Role: primary

References

Explore related publications, articles, or registry entries linked to this study.

Baron JC. Mapping the ischaemic penumbra with PET: implications for acute stroke treatment. Cerebrovasc Dis. 1999 Jul-Aug;9(4):193-201. doi: 10.1159/000015955.

Reference Type BACKGROUND
PMID: 10393405 (View on PubMed)

Astrup J, Siesjo BK, Symon L. Thresholds in cerebral ischemia - the ischemic penumbra. Stroke. 1981 Nov-Dec;12(6):723-5. doi: 10.1161/01.str.12.6.723. No abstract available.

Reference Type BACKGROUND
PMID: 6272455 (View on PubMed)

Ringleb P., Köhrmann M., Jansen O., et al.: Akuttherapie des ischämischen Schlaganfalls, S2e-Leitlinie, 2021, in:Deutsche Gesellschaft für Neurologie (Hrsg.), Guidelines for Diagnostics und Therapy in Neurology.

Reference Type BACKGROUND

Hacke W, Kaste M, Bluhmki E, Brozman M, Davalos A, Guidetti D, Larrue V, Lees KR, Medeghri Z, Machnig T, Schneider D, von Kummer R, Wahlgren N, Toni D; ECASS Investigators. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008 Sep 25;359(13):1317-29. doi: 10.1056/NEJMoa0804656.

Reference Type BACKGROUND
PMID: 18815396 (View on PubMed)

Wahlgren N, Ahmed N, Davalos A, Hacke W, Millan M, Muir K, Roine RO, Toni D, Lees KR; SITS investigators. Thrombolysis with alteplase 3-4.5 h after acute ischaemic stroke (SITS-ISTR): an observational study. Lancet. 2008 Oct 11;372(9646):1303-9. doi: 10.1016/S0140-6736(08)61339-2. Epub 2008 Sep 12.

Reference Type BACKGROUND
PMID: 18790527 (View on PubMed)

Berkhemer OA, Fransen PS, Beumer D, van den Berg LA, Lingsma HF, Yoo AJ, Schonewille WJ, Vos JA, Nederkoorn PJ, Wermer MJ, van Walderveen MA, Staals J, Hofmeijer J, van Oostayen JA, Lycklama a Nijeholt GJ, Boiten J, Brouwer PA, Emmer BJ, de Bruijn SF, van Dijk LC, Kappelle LJ, Lo RH, van Dijk EJ, de Vries J, de Kort PL, van Rooij WJ, van den Berg JS, van Hasselt BA, Aerden LA, Dallinga RJ, Visser MC, Bot JC, Vroomen PC, Eshghi O, Schreuder TH, Heijboer RJ, Keizer K, Tielbeek AV, den Hertog HM, Gerrits DG, van den Berg-Vos RM, Karas GB, Steyerberg EW, Flach HZ, Marquering HA, Sprengers ME, Jenniskens SF, Beenen LF, van den Berg R, Koudstaal PJ, van Zwam WH, Roos YB, van der Lugt A, van Oostenbrugge RJ, Majoie CB, Dippel DW; MR CLEAN Investigators. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med. 2015 Jan 1;372(1):11-20. doi: 10.1056/NEJMoa1411587. Epub 2014 Dec 17.

Reference Type BACKGROUND
PMID: 25517348 (View on PubMed)

Campbell BC, Mitchell PJ, Kleinig TJ, Dewey HM, Churilov L, Yassi N, Yan B, Dowling RJ, Parsons MW, Oxley TJ, Wu TY, Brooks M, Simpson MA, Miteff F, Levi CR, Krause M, Harrington TJ, Faulder KC, Steinfort BS, Priglinger M, Ang T, Scroop R, Barber PA, McGuinness B, Wijeratne T, Phan TG, Chong W, Chandra RV, Bladin CF, Badve M, Rice H, de Villiers L, Ma H, Desmond PM, Donnan GA, Davis SM; EXTEND-IA Investigators. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med. 2015 Mar 12;372(11):1009-18. doi: 10.1056/NEJMoa1414792. Epub 2015 Feb 11.

Reference Type BACKGROUND
PMID: 25671797 (View on PubMed)

Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J, Roy D, Jovin TG, Willinsky RA, Sapkota BL, Dowlatshahi D, Frei DF, Kamal NR, Montanera WJ, Poppe AY, Ryckborst KJ, Silver FL, Shuaib A, Tampieri D, Williams D, Bang OY, Baxter BW, Burns PA, Choe H, Heo JH, Holmstedt CA, Jankowitz B, Kelly M, Linares G, Mandzia JL, Shankar J, Sohn SI, Swartz RH, Barber PA, Coutts SB, Smith EE, Morrish WF, Weill A, Subramaniam S, Mitha AP, Wong JH, Lowerison MW, Sajobi TT, Hill MD; ESCAPE Trial Investigators. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med. 2015 Mar 12;372(11):1019-30. doi: 10.1056/NEJMoa1414905. Epub 2015 Feb 11.

Reference Type BACKGROUND
PMID: 25671798 (View on PubMed)

Saver JL, Goyal M, Bonafe A, Diener HC, Levy EI, Pereira VM, Albers GW, Cognard C, Cohen DJ, Hacke W, Jansen O, Jovin TG, Mattle HP, Nogueira RG, Siddiqui AH, Yavagal DR, Baxter BW, Devlin TG, Lopes DK, Reddy VK, du Mesnil de Rochemont R, Singer OC, Jahan R; SWIFT PRIME Investigators. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med. 2015 Jun 11;372(24):2285-95. doi: 10.1056/NEJMoa1415061. Epub 2015 Apr 17.

Reference Type BACKGROUND
PMID: 25882376 (View on PubMed)

Jovin TG, Chamorro A, Cobo E, de Miquel MA, Molina CA, Rovira A, San Roman L, Serena J, Abilleira S, Ribo M, Millan M, Urra X, Cardona P, Lopez-Cancio E, Tomasello A, Castano C, Blasco J, Aja L, Dorado L, Quesada H, Rubiera M, Hernandez-Perez M, Goyal M, Demchuk AM, von Kummer R, Gallofre M, Davalos A; REVASCAT Trial Investigators. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med. 2015 Jun 11;372(24):2296-306. doi: 10.1056/NEJMoa1503780. Epub 2015 Apr 17.

Reference Type BACKGROUND
PMID: 25882510 (View on PubMed)

Goyal M, Menon BK, van Zwam WH, Dippel DW, Mitchell PJ, Demchuk AM, Davalos A, Majoie CB, van der Lugt A, de Miquel MA, Donnan GA, Roos YB, Bonafe A, Jahan R, Diener HC, van den Berg LA, Levy EI, Berkhemer OA, Pereira VM, Rempel J, Millan M, Davis SM, Roy D, Thornton J, Roman LS, Ribo M, Beumer D, Stouch B, Brown S, Campbell BC, van Oostenbrugge RJ, Saver JL, Hill MD, Jovin TG; HERMES collaborators. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet. 2016 Apr 23;387(10029):1723-31. doi: 10.1016/S0140-6736(16)00163-X. Epub 2016 Feb 18.

Reference Type BACKGROUND
PMID: 26898852 (View on PubMed)

Stroke Unit Trialists' Collaboration. Organised inpatient (stroke unit) care for stroke. Cochrane Database Syst Rev. 2013 Sep 11;2013(9):CD000197. doi: 10.1002/14651858.CD000197.pub3.

Reference Type BACKGROUND
PMID: 24026639 (View on PubMed)

Sandercock PA, Counsell C, Gubitz GJ, Tseng MC. Antiplatelet therapy for acute ischaemic stroke. Cochrane Database Syst Rev. 2008 Jul 16;(3):CD000029. doi: 10.1002/14651858.CD000029.pub2.

Reference Type BACKGROUND
PMID: 18646056 (View on PubMed)

Langhorne P, Pollock A; Stroke Unit Trialists' Collaboration. What are the components of effective stroke unit care? Age Ageing. 2002 Sep;31(5):365-71. doi: 10.1093/ageing/31.5.365.

Reference Type BACKGROUND
PMID: 12242199 (View on PubMed)

Ahmed N, Wahlgren N, Brainin M, Castillo J, Ford GA, Kaste M, Lees KR, Toni D; SITS Investigators. Relationship of blood pressure, antihypertensive therapy, and outcome in ischemic stroke treated with intravenous thrombolysis: retrospective analysis from Safe Implementation of Thrombolysis in Stroke-International Stroke Thrombolysis Register (SITS-ISTR). Stroke. 2009 Jul;40(7):2442-9. doi: 10.1161/STROKEAHA.109.548602. Epub 2009 May 21.

Reference Type BACKGROUND
PMID: 19461022 (View on PubMed)

Barow E, Thomalla G. [Acute treatment of ischemic stroke : Current standards]. Nervenarzt. 2019 Oct;90(10):979-986. doi: 10.1007/s00115-019-0776-5. German.

Reference Type BACKGROUND
PMID: 31407046 (View on PubMed)

Sobesky J. [Therapy of acute ischemic stroke]. Internist (Berl). 2009 Nov;50(11):1218-26. doi: 10.1007/s00108-009-2470-3. German.

Reference Type BACKGROUND
PMID: 19838656 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

GI-NEU-2101

Identifier Type: -

Identifier Source: org_study_id