Additional Insulin for High Fat/Protein in Type 1 Diabetes
NCT ID: NCT05152121
Last Updated: 2021-12-30
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
20 participants
INTERVENTIONAL
2017-07-01
2019-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Methods: In this single-center, non-blinded, randomized, crossover study a high fat, high energy density test meal containing 80 gram carbohydrate (34%), 70 gram fat (66%) and 35 g protein (14%) was given using standard carbohydrate counting (CC) on the first test day and PA was used for the second test day for the same meal. Two methods were compared on postprandial early (0-120 min), late (120-720 min) and total (0-720 min) glucose response in 20 patients with type 1 diabetes mellitus (T1DM), aged 9-18 years on continuous subcutan insulin infusion (CSII) therapy using continuous glucose monitoring system (CGMS).
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Keywords
Explore important study keywords that can help with search, categorization, and topic discovery.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
SUPPORTIVE_CARE
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
carb counting
Patients using insulin infusion pumps will be placed CGMS for 2 days before starting the study to check whether they are within the target blood glucose levels and normoglycemia will be provided. The content of the first day of the study; The test meal, which is 80 g carbohydrate (29.3%), 70.2 g fat (57.9%), 34.7 g protein (12.7%), will be consumed in the evening meal and normal bolus insulin will be given according to carbohydrate counting. On the second day of the study, instead of the normal bolus for the test meal, the additional insulin for fat-protein by dual wave bolus that.The data obtained will be analyzed by evaluating the CGMS data of all patients by a pediatric endocrinologist experienced in diabetes, CGMS and insulin infusion pump therapy.
Carb and fat counting
In the 7 days leading up to the study, participants were contacted to review blood glucose levels with CGMS, food and activity diary. basal rates and insulin carbohydrate ratio and sensitivity factor were changed according to the CGMS values and normoglycemia was achieved.In the study day same meals were served which included high fat, high energy density test meal containing 80 gram carbohydrate (34%), 70 gram fat (66%) and 35 g protein (14%).The participants had to have no glucose fluctuations 2 hours before study entry based on CGMS, no correction boluses for at least 4 hours before the test meal consumption and fasting glycemia in the range of 70-180 mg/dL on both study days.The participants received the test meal calculating insulin dose by CC on the first study day and calculating insulin dose by and fat/protein counting in the second study day. The test meal consumption was completed in 20 minutes under supervision by a caregiver and a dietician of the research team
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Carb and fat counting
In the 7 days leading up to the study, participants were contacted to review blood glucose levels with CGMS, food and activity diary. basal rates and insulin carbohydrate ratio and sensitivity factor were changed according to the CGMS values and normoglycemia was achieved.In the study day same meals were served which included high fat, high energy density test meal containing 80 gram carbohydrate (34%), 70 gram fat (66%) and 35 g protein (14%).The participants had to have no glucose fluctuations 2 hours before study entry based on CGMS, no correction boluses for at least 4 hours before the test meal consumption and fasting glycemia in the range of 70-180 mg/dL on both study days.The participants received the test meal calculating insulin dose by CC on the first study day and calculating insulin dose by and fat/protein counting in the second study day. The test meal consumption was completed in 20 minutes under supervision by a caregiver and a dietician of the research team
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
2. Those with a body mass index between -2- + 2 SD
Exclusion Criteria
2. Cases with diseases accompanying T1DM (autoimmune diseases such as celiac, cystic fibrosis, etc.)
3. Body mass index \<-2 SD and\> +2 SD
9 Years
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Ege University
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Yasemin Atik Altinok
Dietician PhD
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Sukran Darcan, MD Prof
Role: STUDY_CHAIR
Ege University
Yasemin Atik Altınok, pHD
Role: PRINCIPAL_INVESTIGATOR
Ege University Fac Of Medicine Department of Pediatrics
Hafize Cetin Işıklar, Nurse
Role: PRINCIPAL_INVESTIGATOR
Ege University Fac Of Medicine Department of Pediatrics
Gunay Demir, MSci Nurse
Role: PRINCIPAL_INVESTIGATOR
Ege University Fac Of Medicine Department of Pediatrics
Samim Ozen, MD,PhD
Role: PRINCIPAL_INVESTIGATOR
Ege University Fac Of Medicine Department of Pediatrics
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Ege University Faculty of Medicine Department of Pediatrics
Izmir, , Turkey (Türkiye)
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Diabetes Control and Complications Trial Research Group; Nathan DM, Genuth S, Lachin J, Cleary P, Crofford O, Davis M, Rand L, Siebert C. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993 Sep 30;329(14):977-86. doi: 10.1056/NEJM199309303291401.
Gingras V, Bonato L, Messier V, Roy-Fleming A, Smaoui MR, Ladouceur M, Rabasa-Lhoret R. Impact of macronutrient content of meals on postprandial glucose control in the context of closed-loop insulin delivery: A randomized cross-over study. Diabetes Obes Metab. 2018 Nov;20(11):2695-2699. doi: 10.1111/dom.13445. Epub 2018 Jul 18.
American Diabetes Association. 5. Facilitating Behavior Change and Well-being to Improve Health Outcomes: Standards of Medical Care in Diabetes-2021. Diabetes Care. 2021 Jan;44(Suppl 1):S53-S72. doi: 10.2337/dc21-S005.
Smart CE, Annan F, Higgins LA, Jelleryd E, Lopez M, Acerini CL. ISPAD Clinical Practice Consensus Guidelines 2018: Nutritional management in children and adolescents with diabetes. Pediatr Diabetes. 2018 Oct;19 Suppl 27:136-154. doi: 10.1111/pedi.12738. No abstract available.
Pankowska E, Szypowska A, Lipka M, Szpotanska M, Blazik M, Groele L. Application of novel dual wave meal bolus and its impact on glycated hemoglobin A1c level in children with type 1 diabetes. Pediatr Diabetes. 2009 Aug;10(5):298-303. doi: 10.1111/j.1399-5448.2008.00471.x. Epub 2008 Oct 20.
Danne T, Nimri R, Battelino T, Bergenstal RM, Close KL, DeVries JH, Garg S, Heinemann L, Hirsch I, Amiel SA, Beck R, Bosi E, Buckingham B, Cobelli C, Dassau E, Doyle FJ 3rd, Heller S, Hovorka R, Jia W, Jones T, Kordonouri O, Kovatchev B, Kowalski A, Laffel L, Maahs D, Murphy HR, Norgaard K, Parkin CG, Renard E, Saboo B, Scharf M, Tamborlane WV, Weinzimer SA, Phillip M. International Consensus on Use of Continuous Glucose Monitoring. Diabetes Care. 2017 Dec;40(12):1631-1640. doi: 10.2337/dc17-1600.
Bell KJ, Smart CE, Steil GM, Brand-Miller JC, King B, Wolpert HA. Impact of fat, protein, and glycemic index on postprandial glucose control in type 1 diabetes: implications for intensive diabetes management in the continuous glucose monitoring era. Diabetes Care. 2015 Jun;38(6):1008-15. doi: 10.2337/dc15-0100.
Jones SM, Quarry JL, Caldwell-McMillan M, Mauger DT, Gabbay RA. Optimal insulin pump dosing and postprandial glycemia following a pizza meal using the continuous glucose monitoring system. Diabetes Technol Ther. 2005 Apr;7(2):233-40. doi: 10.1089/dia.2005.7.233.
Wolever TM, Mullan YM. Sugars and fat have different effects on postprandial glucose responses in normal and type 1 diabetic subjects. Nutr Metab Cardiovasc Dis. 2011 Sep;21(9):719-25. doi: 10.1016/j.numecd.2010.12.005. Epub 2011 Feb 16.
Pankowska E, Blazik M, Groele L. Does the fat-protein meal increase postprandial glucose level in type 1 diabetes patients on insulin pump: the conclusion of a randomized study. Diabetes Technol Ther. 2012 Jan;14(1):16-22. doi: 10.1089/dia.2011.0083. Epub 2011 Oct 20.
Smart CE, Evans M, O'Connell SM, McElduff P, Lopez PE, Jones TW, Davis EA, King BR. Both dietary protein and fat increase postprandial glucose excursions in children with type 1 diabetes, and the effect is additive. Diabetes Care. 2013 Dec;36(12):3897-902. doi: 10.2337/dc13-1195. Epub 2013 Oct 29.
Wolpert HA, Atakov-Castillo A, Smith SA, Steil GM. Dietary fat acutely increases glucose concentrations and insulin requirements in patients with type 1 diabetes: implications for carbohydrate-based bolus dose calculation and intensive diabetes management. Diabetes Care. 2013 Apr;36(4):810-6. doi: 10.2337/dc12-0092. Epub 2012 Nov 27.
Paterson MA, Smart CEM, Lopez PE, Howley P, McElduff P, Attia J, Morbey C, King BR. Increasing the protein quantity in a meal results in dose-dependent effects on postprandial glucose levels in individuals with Type 1 diabetes mellitus. Diabet Med. 2017 Jun;34(6):851-854. doi: 10.1111/dme.13347. Epub 2017 Mar 19.
van der Hoogt M, van Dyk JC, Dolman RC, Pieters M. Protein and fat meal content increase insulin requirement in children with type 1 diabetes - Role of duration of diabetes. J Clin Transl Endocrinol. 2017 Oct 10;10:15-21. doi: 10.1016/j.jcte.2017.10.002. eCollection 2017 Dec.
Neu A, Behret F, Braun R, Herrlich S, Liebrich F, Loesch-Binder M, Schneider A, Schweizer R. Higher glucose concentrations following protein- and fat-rich meals - the Tuebingen Grill Study: a pilot study in adolescents with type 1 diabetes. Pediatr Diabetes. 2015 Dec;16(8):587-91. doi: 10.1111/pedi.12224. Epub 2014 Oct 20.
Paterson MA, Smart CE, Lopez PE, McElduff P, Attia J, Morbey C, King BR. Influence of dietary protein on postprandial blood glucose levels in individuals with Type 1 diabetes mellitus using intensive insulin therapy. Diabet Med. 2016 May;33(5):592-8. doi: 10.1111/dme.13011. Epub 2015 Dec 6.
Evans M, Smart CEM, Paramalingam N, Smith GJ, Jones TW, King BR, Davis EA. Dietary protein affects both the dose and pattern of insulin delivery required to achieve postprandial euglycaemia in Type 1 diabetes: a randomized trial. Diabet Med. 2019 Apr;36(4):499-504. doi: 10.1111/dme.13875. Epub 2019 Feb 20.
Lopez PE, Evans M, King BR, Jones TW, Bell K, McElduff P, Davis EA, Smart CE. A randomized comparison of three prandial insulin dosing algorithms for children and adolescents with Type 1 diabetes. Diabet Med. 2018 Oct;35(10):1440-1447. doi: 10.1111/dme.13703. Epub 2018 Jun 19.
Kordonouri O, Hartmann R, Remus K, Blasig S, Sadeghian E, Danne T. Benefit of supplementary fat plus protein counting as compared with conventional carbohydrate counting for insulin bolus calculation in children with pump therapy. Pediatr Diabetes. 2012 Nov;13(7):540-4. doi: 10.1111/j.1399-5448.2012.00880.x. Epub 2012 Jul 6.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
16-12.1/44
Identifier Type: -
Identifier Source: org_study_id