Restoring Hemodynamic Stability Using Targeted Epidural Spinal Stimulation Following Spinal Cord Injury
NCT ID: NCT05044923
Last Updated: 2021-12-21
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
NA
8 participants
INTERVENTIONAL
2021-12-31
2023-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Here, the investigators propose to stimulate the circuits in the spinal cord that are directly responsible for hemodynamic control to restore hemodynamic stability in participants with chronic cervical or high-thoracic spinal cord injury. The ultimate objective of this feasibility study is to provide preliminary safety and efficacy measures on the ability of the hemodynamic TESS to ensure the long-term management of hemodynamic instability and reduce the incidence and severity of orthostatic hypotension and autonomic dysreflexia episodes in humans with chronic cervical or high-thoracic spinal cord injury. In addition, the investigators aim to evaluate the long-term safety and efficacy of TESS on cardiovascular health, respiratory function, spasticity, trunk stability, sleep and quality of life in participants with chronic spinal cord injury.
The HEMO Trial will implant 4 participants with chronic (\>12 months) spinal cord injury located between C3 and T6 who have confirmed severe orthostatic hypotension and autonomic dysreflexia. Enrolled participants will undergo baseline assessments, after which they will be implanted with the investigational system. Participants will then proceed to one month of an intensive device configuration protocol to configure the TESS settings of their investigational device to regain hemodynamic stability. After the intensive device configuration phase, daily supervised at-home hemodynamic TESS will be conducted for two weeks. Thereafter, and up to 25 weeks post-implant, participants will conduct supported at-home sessions as well as regular laboratory visits during a long-term at-home hemodynamic TESS phase. Finally, participants will undergo additional testing during a configuration of additional TESS programs phase. During this phase TESS configurations for hemodynamic stability, respiratory function, trunk stability and spasticity will be tested. Several clinical evaluations are planned to evaluate participants' hemodynamic and neurological status, cardiovascular functional status, respiratory function, trunk stability, and quality of life.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Keywords
Explore important study keywords that can help with search, categorization, and topic discovery.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Targeted Epidural Spinal Stimulation
Participants will undergo surgery to implant devices that will be used for Targeted Epidural Spinal Stimulation (TESS).
Targeted Epidural Spinal Stimulation
Two lead electrodes (Specify Surescan 5-6-5 Leads, Model 977C190 Medtronic) will be implanted epidurally over the dorsal aspect of the spinal cord through two laminotomies. Two implantable pulse generators (Intellis™ with AdaptiveStim™, Model 97715 Medtronic) will be connected to the lead electrodes and implanted in the upper buttocks of the participant.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Targeted Epidural Spinal Stimulation
Two lead electrodes (Specify Surescan 5-6-5 Leads, Model 977C190 Medtronic) will be implanted epidurally over the dorsal aspect of the spinal cord through two laminotomies. Two implantable pulse generators (Intellis™ with AdaptiveStim™, Model 97715 Medtronic) will be connected to the lead electrodes and implanted in the upper buttocks of the participant.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Able to undergo the informed consent/assent process
* Radiologically confirmed spinal cord injury
* Spinal cord injury between C3 and T6
* Classified with American Spinal Injury Association Impairment Scale (AIS) A or B Spinal cord injury
* Stable medical, physical and psychological condition as considered by Investigators
* Greater than 1 year since initial injury and at least 6 months from any required spinal instrumentation
* Confirmed orthostatic hypotension and autonomic dysreflexia
* Willing to attend all scheduled appointments
Exclusion Criteria
* The inability to withhold antiplatelet/anticoagulation agents perioperatively
* History of myocardial infarction or cerebrovascular event
* Other conditions that would make the subject unable to participate in testing in the judgment of the investigators
* Current and anticipated need for opioid pain medications or pain that would prevent full participation in the trial in the judgement of the investigators
* Current clinical diagnosis of mental illness
* Clinically significant cognitive impairment
* Current substance or alcohol abuse
* Botulinum toxin injections in the previous 6 months
* Presence of significant pressure ulcers
* Recurrent urinary tract infection refractory to antibiotics
* Current pregnancy
* Current breast feeding
* Unhealed spinal fractures
* Presence of indwelling baclofen or insulin pump
18 Years
70 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Aaron Phillips
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Aaron Phillips
Assistant Professor
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Aaron Phillips, PhD
Role: PRINCIPAL_INVESTIGATOR
University of Calgary
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
University of Calgary
Calgary, Alberta, Canada
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
Study Coordinator
Role: primary
References
Explore related publications, articles, or registry entries linked to this study.
Squair JW, Gautier M, Mahe L, Soriano JE, Rowald A, Bichat A, Cho N, Anderson MA, James ND, Gandar J, Incognito AV, Schiavone G, Sarafis ZK, Laskaratos A, Bartholdi K, Demesmaeker R, Komi S, Moerman C, Vaseghi B, Scott B, Rosentreter R, Kathe C, Ravier J, McCracken L, Kang X, Vachicouras N, Fallegger F, Jelescu I, Cheng Y, Li Q, Buschman R, Buse N, Denison T, Dukelow S, Charbonneau R, Rigby I, Boyd SK, Millar PJ, Moraud EM, Capogrosso M, Wagner FB, Barraud Q, Bezard E, Lacour SP, Bloch J, Courtine G, Phillips AA. Neuroprosthetic baroreflex controls haemodynamics after spinal cord injury. Nature. 2021 Feb;590(7845):308-314. doi: 10.1038/s41586-020-03180-w. Epub 2021 Jan 27.
Anderson KD. Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma. 2004 Oct;21(10):1371-83. doi: 10.1089/neu.2004.21.1371.
Cragg JJ, Noonan VK, Krassioukov A, Borisoff J. Cardiovascular disease and spinal cord injury: results from a national population health survey. Neurology. 2013 Aug 20;81(8):723-8. doi: 10.1212/WNL.0b013e3182a1aa68. Epub 2013 Jul 24.
Illman A, Stiller K, Williams M. The prevalence of orthostatic hypotension during physiotherapy treatment in patients with an acute spinal cord injury. Spinal Cord. 2000 Dec;38(12):741-7. doi: 10.1038/sj.sc.3101089.
Phillips AA, Krassioukov AV. Contemporary Cardiovascular Concerns after Spinal Cord Injury: Mechanisms, Maladaptations, and Management. J Neurotrauma. 2015 Dec 15;32(24):1927-42. doi: 10.1089/neu.2015.3903. Epub 2015 Sep 1.
Phillips AA, Krassioukov AV, Ainslie PN, Warburton DE. Perturbed and spontaneous regional cerebral blood flow responses to changes in blood pressure after high-level spinal cord injury: the effect of midodrine. J Appl Physiol (1985). 2014 Mar 15;116(6):645-53. doi: 10.1152/japplphysiol.01090.2013. Epub 2014 Jan 16.
Phillips AA, Warburton DE, Ainslie PN, Krassioukov AV. Regional neurovascular coupling and cognitive performance in those with low blood pressure secondary to high-level spinal cord injury: improved by alpha-1 agonist midodrine hydrochloride. J Cereb Blood Flow Metab. 2014 May;34(5):794-801. doi: 10.1038/jcbfm.2014.3. Epub 2014 Jan 29.
Phillips AA, Elliott SL, Zheng MM, Krassioukov AV. Selective alpha adrenergic antagonist reduces severity of transient hypertension during sexual stimulation after spinal cord injury. J Neurotrauma. 2015 Mar 15;32(6):392-6. doi: 10.1089/neu.2014.3590. Epub 2014 Dec 5.
Krassioukov A, Eng JJ, Warburton DE, Teasell R; Spinal Cord Injury Rehabilitation Evidence Research Team. A systematic review of the management of orthostatic hypotension after spinal cord injury. Arch Phys Med Rehabil. 2009 May;90(5):876-85. doi: 10.1016/j.apmr.2009.01.009.
Squair JW, Phillips AA, Harmon M, Krassioukov AV. Emergency management of autonomic dysreflexia with neurologic complications. CMAJ. 2016 Oct 18;188(15):1100-1103. doi: 10.1503/cmaj.151311. Epub 2016 May 24. No abstract available.
Phillips AA, Krassioukov AV, Ainslie PN, Warburton DE. Baroreflex function after spinal cord injury. J Neurotrauma. 2012 Oct 10;29(15):2431-45. doi: 10.1089/neu.2012.2507. Epub 2012 Sep 20.
Courtine G, Gerasimenko Y, van den Brand R, Yew A, Musienko P, Zhong H, Song B, Ao Y, Ichiyama RM, Lavrov I, Roy RR, Sofroniew MV, Edgerton VR. Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci. 2009 Oct;12(10):1333-42. doi: 10.1038/nn.2401. Epub 2009 Sep 20.
Wagner FB, Mignardot JB, Le Goff-Mignardot CG, Demesmaeker R, Komi S, Capogrosso M, Rowald A, Seanez I, Caban M, Pirondini E, Vat M, McCracken LA, Heimgartner R, Fodor I, Watrin A, Seguin P, Paoles E, Van Den Keybus K, Eberle G, Schurch B, Pralong E, Becce F, Prior J, Buse N, Buschman R, Neufeld E, Kuster N, Carda S, von Zitzewitz J, Delattre V, Denison T, Lambert H, Minassian K, Bloch J, Courtine G. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature. 2018 Nov;563(7729):65-71. doi: 10.1038/s41586-018-0649-2. Epub 2018 Oct 31.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
REB21-0027
Identifier Type: -
Identifier Source: org_study_id