Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
60 participants
OBSERVATIONAL
2020-07-01
2024-12-01
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
The aim of our study is to find specific enhancement patterns in various cerebral compartments in correlation with specific diseases and procedures such as radiation, surgery and drug application in delayed gadolinium imaging. Only patients with a clinical indication for GBCA will be included in this prospective study. Before enrollment, each patient will have provided written informed consent of participation and publication prior to inclusion to the observational study. The scan will be performed as baseline before intravenous contrast administration of a single dose of gadoteric acid 20 minutes and 120 minutes after contrast administration. Whole-brain image stacks will be analyzed on patient basis. Regions of interest for signal intensity measurements will be drawn in various cerebral fluid spaces, the size of the region of interest will depend on the target structure. The following structures should be measured: lateral and central aqueous chamber and vitreous body of the eye, distal optic nerve sheath, Meckel's cave, lateral ventricles and basal cisterns.
Data will be expressed as mean values +/- one-fold standard deviation (SD). The normality of data distribution will be assessed using Levene's test. Data showing a Gaussian distribution will be evaluated by an analysis of variances (ANOVA) with a post-hoc analysis. Estimated sample size is around 30 patients in the control and the experimental group. Cases with missing or unavailable data will be excluded.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
CASE_CONTROL
PROSPECTIVE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
experimental
patients with a condition
No interventions assigned to this group
control
patients without condition
No interventions assigned to this group
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Written informed consent
* No allergies to GBCA
Exclusion Criteria
18 Years
90 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Paracelsus Medical University
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Dr. Panagiota Manava
Senior physician, Institute of Radiology and Nuclear Medicine, Klinikum Nuernberg
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Institute of Radiology and Nuclear Medicine
Nuremberg, Bavaria, Germany
Countries
Review the countries where the study has at least one active or historical site.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Deike-Hofmann K, Reuter J, Haase R, Paech D, Gnirs R, Bickelhaupt S, Forsting M, Heussel CP, Schlemmer HP, Radbruch A. Glymphatic Pathway of Gadolinium-Based Contrast Agents Through the Brain: Overlooked and Misinterpreted. Invest Radiol. 2019 Apr;54(4):229-237. doi: 10.1097/RLI.0000000000000533.
Taoka T, Naganawa S. Gadolinium-based Contrast Media, Cerebrospinal Fluid and the Glymphatic System: Possible Mechanisms for the Deposition of Gadolinium in the Brain. Magn Reson Med Sci. 2018 Apr 10;17(2):111-119. doi: 10.2463/mrms.rev.2017-0116. Epub 2018 Jan 25.
Absinta M, Ha SK, Nair G, Sati P, Luciano NJ, Palisoc M, Louveau A, Zaghloul KA, Pittaluga S, Kipnis J, Reich DS. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. Elife. 2017 Oct 3;6:e29738. doi: 10.7554/eLife.29738.
Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA. Evidence for a 'paravascular' fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res. 1985 Feb 4;326(1):47-63. doi: 10.1016/0006-8993(85)91383-6.
Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med. 2012 Aug 15;4(147):147ra111. doi: 10.1126/scitranslmed.3003748.
Bedussi B, Almasian M, de Vos J, VanBavel E, Bakker EN. Paravascular spaces at the brain surface: Low resistance pathways for cerebrospinal fluid flow. J Cereb Blood Flow Metab. 2018 Apr;38(4):719-726. doi: 10.1177/0271678X17737984. Epub 2017 Oct 17.
Smith AJ, Yao X, Dix JA, Jin BJ, Verkman AS. Test of the 'glymphatic' hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma. Elife. 2017 Aug 21;6:e27679. doi: 10.7554/eLife.27679.
Dobson H, Sharp MM, Cumpsty R, Criswell TP, Wellman T, Finucane C, Sullivan JM, Weller RO, Verma A, Carare RO. The perivascular pathways for influx of cerebrospinal fluid are most efficient in the midbrain. Clin Sci (Lond). 2017 Nov 13;131(22):2745-2752. doi: 10.1042/CS20171265. Print 2017 Nov 15.
Iliff JJ, Wang M, Zeppenfeld DM, Venkataraman A, Plog BA, Liao Y, Deane R, Nedergaard M. Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci. 2013 Nov 13;33(46):18190-9. doi: 10.1523/JNEUROSCI.1592-13.2013.
Manava P, Eckrich C, Luciani F, Schmidbauer J, Lell MM, Detmar K. Glymphatic System in Ocular Diseases: Evaluation of MRI Findings. AJNR Am J Neuroradiol. 2022 Jul;43(7):1012-1017. doi: 10.3174/ajnr.A7552. Epub 2022 Jun 30.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
GP_2021_KNN
Identifier Type: -
Identifier Source: org_study_id