Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
12 participants
INTERVENTIONAL
2022-01-01
2023-06-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Timing of Pre-meal Insulin Versus Accurate Carbohydrate Counting in Youth With Type 1 Diabetes
NCT01209312
Low-carbohydrate Diet in Children with Type 1 Diabetes
NCT05078658
Type One Diabetes and Low Carb Study
NCT02839174
Safety of Low and Very Low Carbohydrate Diets in Young Children With Type 1 Diabetes
NCT03862521
Carbohydrate Counting in Children and Adolescents With Type 1 Diabetes
NCT02350374
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Group 1- Standard Care (control)
* includes a minimum 12-hour feeding window for 7 days per week
* no caloric restriction will be used
* will wear a continuous glucose monitor
Group 2 - TLE (intervention)
* includes an 8-hour feed/16-hour fast for 7 days per week
* will be instructed to consume all of their calories in the afternoon/evening period
* can consume non-caloric beverages (water, tea, coffee) during the fasting period
* will wear a continuous glucose monitor
* no caloric restriction will be used
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Control - Standard Care
* includes a minimum 12-hour feeding window for 7 days per week
* no caloric restriction will be used
* will wear a continuous glucose monitor
No interventions assigned to this group
Intervention - Time Limited Eating
* includes an 8-hour feed/16-hour fast for 7 days per week
* will be instructed to consume all of their calories in the afternoon/evening period
* can consume non-caloric beverages (water, tea, coffee) during the fasting period
* will wear a continuous glucose monitor
* no caloric restriction will be used
Time Limited Eating
Includes an 8-hour feed/16-hour fast for 7 days per week, with consumption of all of calories in the afternoon/evening. Can consume non-caloric beverages (water, tea, coffee) during the fasting period. No caloric restriction will be used.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Time Limited Eating
Includes an 8-hour feed/16-hour fast for 7 days per week, with consumption of all of calories in the afternoon/evening. Can consume non-caloric beverages (water, tea, coffee) during the fasting period. No caloric restriction will be used.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* T1D diagnosed within 6 months
* at least one positive pancreatic antibody including glutamic acid decarboxylase (GAD) antibody, islet tyrosine phosphatase 2 (IA2) antibody, or insulin antibody
* can be on either insulin injections or insulin pump
* can be of any BMI status
* can speak any language
Exclusion Criteria
* unwillingness to wear a CGM
12 Years
25 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Children's Hospital Los Angeles
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
jennifer raymond
Chief of the Division of Endocrinology, Principal Investigator
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Children's Hospital Los Angeles
Los Angeles, California, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Gabel K, Varady KA. Feasibility of Time-Restricted Eating. Obesity (Silver Spring). 2020 May;28(5):860. doi: 10.1002/oby.22785. No abstract available.
Gabel K, Hoddy KK, Varady KA. Safety of 8-h time restricted feeding in adults with obesity. Appl Physiol Nutr Metab. 2019 Jan;44(1):107-109. doi: 10.1139/apnm-2018-0389. Epub 2018 Sep 14.
Cienfuegos S, Gabel K, Kalam F, Ezpeleta M, Wiseman E, Pavlou V, Lin S, Oliveira ML, Varady KA. Effects of 4- and 6-h Time-Restricted Feeding on Weight and Cardiometabolic Health: A Randomized Controlled Trial in Adults with Obesity. Cell Metab. 2020 Sep 1;32(3):366-378.e3. doi: 10.1016/j.cmet.2020.06.018. Epub 2020 Jul 15.
Wilkinson MJ, Manoogian ENC, Zadourian A, Lo H, Fakhouri S, Shoghi A, Wang X, Fleischer JG, Navlakha S, Panda S, Taub PR. Ten-Hour Time-Restricted Eating Reduces Weight, Blood Pressure, and Atherogenic Lipids in Patients with Metabolic Syndrome. Cell Metab. 2020 Jan 7;31(1):92-104.e5. doi: 10.1016/j.cmet.2019.11.004. Epub 2019 Dec 5.
Taylor R. Type 2 diabetes: etiology and reversibility. Diabetes Care. 2013 Apr;36(4):1047-55. doi: 10.2337/dc12-1805. No abstract available.
Sutton EF, Beyl R, Early KS, Cefalu WT, Ravussin E, Peterson CM. Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Metab. 2018 Jun 5;27(6):1212-1221.e3. doi: 10.1016/j.cmet.2018.04.010. Epub 2018 May 10.
Hutchison AT, Regmi P, Manoogian ENC, Fleischer JG, Wittert GA, Panda S, Heilbronn LK. Time-Restricted Feeding Improves Glucose Tolerance in Men at Risk for Type 2 Diabetes: A Randomized Crossover Trial. Obesity (Silver Spring). 2019 May;27(5):724-732. doi: 10.1002/oby.22449. Epub 2019 Apr 19.
Chow LS, Manoogian ENC, Alvear A, Fleischer JG, Thor H, Dietsche K, Wang Q, Hodges JS, Esch N, Malaeb S, Harindhanavudhi T, Nair KS, Panda S, Mashek DG. Time-Restricted Eating Effects on Body Composition and Metabolic Measures in Humans who are Overweight: A Feasibility Study. Obesity (Silver Spring). 2020 May;28(5):860-869. doi: 10.1002/oby.22756. Epub 2020 Apr 9.
Jamshed H, Beyl RA, Della Manna DL, Yang ES, Ravussin E, Peterson CM. Early Time-Restricted Feeding Improves 24-Hour Glucose Levels and Affects Markers of the Circadian Clock, Aging, and Autophagy in Humans. Nutrients. 2019 May 30;11(6):1234. doi: 10.3390/nu11061234.
Center for Disease and Control Prevention. Incidence of newly diagnosed diabetes. https://www.cdc.gov/diabetes/data/statistics-report/newly-diagnosed-diabetes.html. 2020; Accessed April 25, 2021.
Bingley PJ, Wherrett DK, Shultz A, Rafkin LE, Atkinson MA, Greenbaum CJ. Type 1 Diabetes TrialNet: A Multifaceted Approach to Bringing Disease-Modifying Therapy to Clinical Use in Type 1 Diabetes. Diabetes Care. 2018 Apr;41(4):653-661. doi: 10.2337/dc17-0806.
Lennerz BS, Barton A, Bernstein RK, Dikeman RD, Diulus C, Hallberg S, Rhodes ET, Ebbeling CB, Westman EC, Yancy WS Jr, Ludwig DS. Management of Type 1 Diabetes With a Very Low-Carbohydrate Diet. Pediatrics. 2018 Jun;141(6):e20173349. doi: 10.1542/peds.2017-3349. Epub 2018 May 7.
de Souza Bosco Paiva C, Lima MHM. Introducing a very low carbohydrate diet for a child with type 1 diabetes. Br J Nurs. 2019 Aug 8;28(15):1015-1019. doi: 10.12968/bjon.2019.28.15.1015.
Calabrese CM, Valentini A, Calabrese G. Gut Microbiota and Type 1 Diabetes Mellitus: The Effect of Mediterranean Diet. Front Nutr. 2021 Jan 13;7:612773. doi: 10.3389/fnut.2020.612773. eCollection 2020.
Vidmar AP, Goran MI, Naguib M, Fink C, Wee CP, Hegedus E, Lopez K, Gonzalez J, Raymond JK. Time limited eating in adolescents with obesity (time LEAd): Study protocol. Contemp Clin Trials. 2020 Aug;95:106082. doi: 10.1016/j.cct.2020.106082. Epub 2020 Jul 16.
Liu H, Javaheri A, Godar RJ, Murphy J, Ma X, Rohatgi N, Mahadevan J, Hyrc K, Saftig P, Marshall C, McDaniel ML, Remedi MS, Razani B, Urano F, Diwan A. Intermittent fasting preserves beta-cell mass in obesity-induced diabetes via the autophagy-lysosome pathway. Autophagy. 2017;13(11):1952-1968. doi: 10.1080/15548627.2017.1368596. Epub 2017 Nov 25.
Brandhorst S, Choi IY, Wei M, Cheng CW, Sedrakyan S, Navarrete G, Dubeau L, Yap LP, Park R, Vinciguerra M, Di Biase S, Mirzaei H, Mirisola MG, Childress P, Ji L, Groshen S, Penna F, Odetti P, Perin L, Conti PS, Ikeno Y, Kennedy BK, Cohen P, Morgan TE, Dorff TB, Longo VD. A Periodic Diet that Mimics Fasting Promotes Multi-System Regeneration, Enhanced Cognitive Performance, and Healthspan. Cell Metab. 2015 Jul 7;22(1):86-99. doi: 10.1016/j.cmet.2015.05.012. Epub 2015 Jun 18.
Cheng CW, Villani V, Buono R, Wei M, Kumar S, Yilmaz OH, Cohen P, Sneddon JB, Perin L, Longo VD. Fasting-Mimicking Diet Promotes Ngn3-Driven beta-Cell Regeneration to Reverse Diabetes. Cell. 2017 Feb 23;168(5):775-788.e12. doi: 10.1016/j.cell.2017.01.040.
Foster NC, Beck RW, Miller KM, Clements MA, Rickels MR, DiMeglio LA, Maahs DM, Tamborlane WV, Bergenstal R, Smith E, Olson BA, Garg SK. State of Type 1 Diabetes Management and Outcomes from the T1D Exchange in 2016-2018. Diabetes Technol Ther. 2019 Feb;21(2):66-72. doi: 10.1089/dia.2018.0384. Epub 2019 Jan 18.
DuBose SN, Hermann JM, Tamborlane WV, Beck RW, Dost A, DiMeglio LA, Schwab KO, Holl RW, Hofer SE, Maahs DM; Type 1 Diabetes Exchange Clinic Network and Diabetes Prospective Follow-up Registry. Obesity in Youth with Type 1 Diabetes in Germany, Austria, and the United States. J Pediatr. 2015 Sep;167(3):627-32.e1-4. doi: 10.1016/j.jpeds.2015.05.046. Epub 2015 Jul 8.
Tommerdahl KL, Baumgartner K, Schafer M, Bjornstad P, Melena I, Hegemann S, Baumgartner AD, Pyle L, Cree-Green M, Truong U, Browne L, Regensteiner JG, Reusch JEB, Nadeau KJ. Impact of Obesity on Measures of Cardiovascular and Kidney Health in Youth With Type 1 Diabetes as Compared With Youth With Type 2 Diabetes. Diabetes Care. 2021 Mar;44(3):795-803. doi: 10.2337/dc20-1879. Epub 2021 Jan 5.
Bjornstad P, Snell-Bergeon JK, Rewers M, Jalal D, Chonchol MB, Johnson RJ, Maahs DM. Early diabetic nephropathy: a complication of reduced insulin sensitivity in type 1 diabetes. Diabetes Care. 2013 Nov;36(11):3678-83. doi: 10.2337/dc13-0631. Epub 2013 Sep 11.
Bjornstad P, Schafer M, Truong U, Cree-Green M, Pyle L, Baumgartner A, Garcia Reyes Y, Maniatis A, Nayak S, Wadwa RP, Browne LP, Reusch JEB, Nadeau KJ. Metformin Improves Insulin Sensitivity and Vascular Health in Youth With Type 1 Diabetes Mellitus. Circulation. 2018 Dec 18;138(25):2895-2907. doi: 10.1161/CIRCULATIONAHA.118.035525.
Ruan Y, Willemsen RH, Wilinska ME, Tauschmann M, Dunger DB, Hovorka R. Mixed-meal tolerance test to assess residual beta-cell secretion: Beyond the area-under-curve of plasma C-peptide concentration. Pediatr Diabetes. 2019 May;20(3):282-285. doi: 10.1111/pedi.12816. Epub 2019 Feb 19.
Shim WS, Kim SK, Kim HJ, Kang ES, Ahn CW, Lim SK, Lee HC, Cha BS. Decrement of postprandial insulin secretion determines the progressive nature of type-2 diabetes. Eur J Endocrinol. 2006 Oct;155(4):615-22. doi: 10.1530/eje.1.02249.
Paglialunga S, Guerrero A, Roessig JM, Rubin P, Dehn CA. Adding to the spectrum of insulin sensitive populations for mixed meal tolerance test glucose reliability assessment. J Diabetes Metab Disord. 2016 Dec 7;15:57. doi: 10.1186/s40200-016-0279-x. eCollection 2016.
Shankar SS, Vella A, Raymond RH, Staten MA, Calle RA, Bergman RN, Cao C, Chen D, Cobelli C, Dalla Man C, Deeg M, Dong JQ, Lee DS, Polidori D, Robertson RP, Ruetten H, Stefanovski D, Vassileva MT, Weir GC, Fryburg DA; Foundation for the National Institutes of Health beta-Cell Project Team. Standardized Mixed-Meal Tolerance and Arginine Stimulation Tests Provide Reproducible and Complementary Measures of beta-Cell Function: Results From the Foundation for the National Institutes of Health Biomarkers Consortium Investigative Series. Diabetes Care. 2016 Sep;39(9):1602-13. doi: 10.2337/dc15-0931. Epub 2016 Jul 12.
Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985 Jul;28(7):412-9. doi: 10.1007/BF00280883.
Bergman RN, Phillips LS, Cobelli C. Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose. J Clin Invest. 1981 Dec;68(6):1456-67. doi: 10.1172/jci110398.
Shah VN, DuBose SN, Li Z, Beck RW, Peters AL, Weinstock RS, Kruger D, Tansey M, Sparling D, Woerner S, Vendrame F, Bergenstal R, Tamborlane WV, Watson SE, Sherr J. Continuous Glucose Monitoring Profiles in Healthy Nondiabetic Participants: A Multicenter Prospective Study. J Clin Endocrinol Metab. 2019 Oct 1;104(10):4356-4364. doi: 10.1210/jc.2018-02763.
Harnack L. Nutrition Data System for Research (NDSR). In: Gellman M.D., Turner J.R. (eds) Encyclopedia of Behavioral Medicine. Springer. 2013.
Raper N, Perloff B, Ingwerson L, Steinfeldt L, Anand J. An overview of USDA's Dietary Intake Data System. Journal of Food Composition and Analysis. 2004;17(3-4):545-555.
Hood KK, Beavers DP, Yi-Frazier J, Bell R, Dabelea D, Mckeown RE, Lawrence JM. Psychosocial burden and glycemic control during the first 6 years of diabetes: results from the SEARCH for Diabetes in Youth study. J Adolesc Health. 2014 Oct;55(4):498-504. doi: 10.1016/j.jadohealth.2014.03.011. Epub 2014 May 10.
Ivezaj V, White MA, Grilo CM. Examining binge-eating disorder and food addiction in adults with overweight and obesity. Obesity (Silver Spring). 2016 Oct;24(10):2064-9. doi: 10.1002/oby.21607. Epub 2016 Aug 25.
Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, Pratt M, Ekelund U, Yngve A, Sallis JF, Oja P. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003 Aug;35(8):1381-95. doi: 10.1249/01.MSS.0000078924.61453.FB.
Vidmar AP, Goran MI, Raymond JK. Time-Limited Eating in Pediatric Patients with Obesity: A Case Series. J Food Sci Nutr Res. 2019;2(3):236-244. doi: 10.26502/jfsnr.2642-11000022. Epub 2019 Sep 20.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
CHLA-21-00269
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.