Tracheal Dilatation in Pediatric Patients With Acquired Tracheal Stenosis, and the Effects of Apneic Oxygenation
NCT ID: NCT05028023
Last Updated: 2021-08-31
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
NA
5 participants
INTERVENTIONAL
2020-10-21
2022-08-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
1.detailed preanesthetic evaluation of the participant, for recognition of clinical signs or pathology, that can complicate the procedure and jeopardize health status 2. written informed consents from parents/caregivers, for anesthesia procedure, for tracheal dilatation procedure, and for participation in the study. All recordings during procedures are performed by the Principal Investigator, and double checked by two Collaborators.In cases of appearance of adverse events during the procedure (i.e. severe desaturation, anaphylactic reaction, severe bronchospasm), it is automatically discontinued, advanced life support is initiated, anesthesia is terminated, and participants are closely monitored during recovery.
Sample size calculation was performed according to G\* power analysis 3.1.9.2. and the Means test: for extraction of results is necessary to record at least five different pediatric patients, who will undergo at least four tracheal dilatation cessions.
For statistical analysis, quantitative variables will be described as median values and standard deviation (or IQR), qualitative variables as frequencies and percentages, while significancy level will be defined as \<0.05.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Keywords
Explore important study keywords that can help with search, categorization, and topic discovery.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
SUPPORTIVE_CARE
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Pediatric patients with tracheal stenosis undergoing tracheal balloon dilatation
Pediatric patients with severe to median acquired tracheal stenosis undergoing tracheal balloon dilatation, and the effects of apneic oxygenation on regional cerebral oxygen saturation rSO2, pulse oximetry SpO2, and arterial oxygen partial pressure PaO2
Apneic oxygenation - supplemental high flow oxygen administration by an apneic way
In pediatric patients undergoing tracheal balloon dilatation, oxygenation maintenance is essential, while induction in anesthesia, cessation of spontaneous ventilation by neuromuscular relaxant and pediatric i-gel placement are necessary for access to trachea. After i-Gel placement controlled ventilation with 100% oxygen is initiated. Pediatric bronchoscope and balloon dilatation catheter are advanced into trachea to the stenotic area. Overall dilatation duration is 2,5-3minutes, while the balloon is inflated for 60sec. Every dilatation cession consists of three dilatations. First dilatation is performed without oxygen enrichment. During second and third dilatation, a nelaton catheter, connected with high oxygen flow, is advanced into i-Gel canal, together with bronchoscope and balloon catheter. Effects of no oxygenation and apneic oxygenation in regional cerebral oxygen saturation rSO2, pulse oximetry SpO2, arterial blood gases and haemodynamics are recorded and compared.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Apneic oxygenation - supplemental high flow oxygen administration by an apneic way
In pediatric patients undergoing tracheal balloon dilatation, oxygenation maintenance is essential, while induction in anesthesia, cessation of spontaneous ventilation by neuromuscular relaxant and pediatric i-gel placement are necessary for access to trachea. After i-Gel placement controlled ventilation with 100% oxygen is initiated. Pediatric bronchoscope and balloon dilatation catheter are advanced into trachea to the stenotic area. Overall dilatation duration is 2,5-3minutes, while the balloon is inflated for 60sec. Every dilatation cession consists of three dilatations. First dilatation is performed without oxygen enrichment. During second and third dilatation, a nelaton catheter, connected with high oxygen flow, is advanced into i-Gel canal, together with bronchoscope and balloon catheter. Effects of no oxygenation and apneic oxygenation in regional cerebral oxygen saturation rSO2, pulse oximetry SpO2, arterial blood gases and haemodynamics are recorded and compared.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Bronchoscopic conferment of tracheal stenosis from the subglottic area to the area above carina
* Maintenance of clinical symptoms despite intensive and long drug therapy with inhalational steroids, adrenalin or salbutamol
* Urgent need for expansion of trachea, because of risk of full obstruction of trachea
Exclusion Criteria
* children with active respiratory tract infection
* children with low hemoglobin levels - anemia
* children with physical status, according to the American Society of Anesthesiologists, III and IV
* parents who refuse the participation of their children in the study and to sign the informed consent
2 Years
14 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Aristotle University Of Thessaloniki
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
IORDANIDOU DESPOINA
MD, Pediatric Anesthetist, Senior Consultant, Anesthesiology Dpt, Hippokratic General Hospital Thessaloniki, Greece
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Despoina Iordanidou, Consultant
Role: PRINCIPAL_INVESTIGATOR
Hippokratio General Hospital, Thessaloniki, Greece
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Hippokratio General Hospital
Thessaloniki, Thessaloniki, Greece
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
Despoina Iordanidou, MD, MSc
Role: primary
Ioannis Tsanakas, Professor
Role: backup
References
Explore related publications, articles, or registry entries linked to this study.
Overmann KM, Boyd SD, Zhang Y, Kerrey BT. Apneic oxygenation to prevent oxyhemoglobin desaturation during rapid sequence intubation in a pediatric emergency department. Am J Emerg Med. 2019 Aug;37(8):1416-1421. doi: 10.1016/j.ajem.2018.10.030. Epub 2018 Oct 18.
Soneru CN, Hurt HF, Petersen TR, Davis DD, Braude DA, Falcon RJ. Apneic nasal oxygenation and safe apnea time during pediatric intubations by learners. Paediatr Anaesth. 2019 Jun;29(6):628-634. doi: 10.1111/pan.13645. Epub 2019 Apr 29.
Brown SB, Hedlund GL, Glasier CM, Williams KD, Greenwood LH, Gilliland JD. Tracheobronchial stenosis in infants: successful balloon dilation therapy. Radiology. 1987 Aug;164(2):475-8. doi: 10.1148/radiology.164.2.3602388.
Cohen MD, Weber TR, Rao CC. Balloon dilatation of tracheal and bronchial stenosis. AJR Am J Roentgenol. 1984 Mar;142(3):477-8. doi: 10.2214/ajr.142.3.477. No abstract available.
Maresh A, Preciado DA, O'Connell AP, Zalzal GH. A comparative analysis of open surgery vs endoscopic balloon dilation for pediatric subglottic stenosis. JAMA Otolaryngol Head Neck Surg. 2014 Oct;140(10):901-5. doi: 10.1001/jamaoto.2014.1742.
Whigham AS, Howell R, Choi S, Pena M, Zalzal G, Preciado D. Outcomes of balloon dilation in pediatric subglottic stenosis. Ann Otol Rhinol Laryngol. 2012 Jul;121(7):442-8. doi: 10.1177/000348941212100704.
Hautefort C, Teissier N, Viala P, Van Den Abbeele T. Balloon dilation laryngoplasty for subglottic stenosis in children: eight years' experience. Arch Otolaryngol Head Neck Surg. 2012 Mar;138(3):235-40. doi: 10.1001/archoto.2011.1439. Epub 2012 Feb 20.
Lang M, Brietzke SE. A systematic review and meta-analysis of endoscopic balloon dilation of pediatric subglottic stenosis. Otolaryngol Head Neck Surg. 2014 Feb;150(2):174-9. doi: 10.1177/0194599813510867. Epub 2013 Nov 5.
HOLMDAHL MH. Pulmonary uptake of oxygen, acid-base metabolism, and circulation during prolonged apnoea. Acta Chir Scand Suppl. 1956;212:1-128. No abstract available.
Mosier JM, Hypes CD, Sakles JC. Understanding preoxygenation and apneic oxygenation during intubation in the critically ill. Intensive Care Med. 2017 Feb;43(2):226-228. doi: 10.1007/s00134-016-4426-0. Epub 2016 Jun 24. No abstract available.
Ricard JD. Hazards of intubation in the ICU: role of nasal high flow oxygen therapy for preoxygenation and apneic oxygenation to prevent desaturation. Minerva Anestesiol. 2016 Oct;82(10):1098-1106. Epub 2016 May 6.
Weingart SD, Levitan RM. Preoxygenation and prevention of desaturation during emergency airway management. Ann Emerg Med. 2012 Mar;59(3):165-75.e1. doi: 10.1016/j.annemergmed.2011.10.002. Epub 2011 Nov 3.
Kernisan G, Adler E, Gibbons P, Runions B (1987). Apneic oxygenation in pediatric patients. Anesthesiology; 67(3A).
Vukovic AA, Hanson HR, Murphy SL, Mercurio D, Sheedy CA, Arnold DH. Apneic oxygenation reduces hypoxemia during endotracheal intubation in the pediatric emergency department. Am J Emerg Med. 2019 Jan;37(1):27-32. doi: 10.1016/j.ajem.2018.04.039. Epub 2018 Apr 18.
Kolettas A, Grosomanidis V, Kolettas V, Zarogoulidis P, Tsakiridis K, Katsikogiannis N, Tsiouda T, Kiougioumtzi I, Machairiotis N, Drylis G, Kesisis G, Beleveslis T, Zarogoulidis K. Influence of apnoeic oxygenation in respiratory and circulatory system under general anaesthesia. J Thorac Dis. 2014 Mar;6 Suppl 1(Suppl 1):S116-45. doi: 10.3978/j.issn.2072-1439.2014.01.17.
Pek JH, Tan HC, Shen G, Ong YG. Apneic Oxygenation for Emergency Intubations in the Pediatric Emergency Department-A Quality Improvement Initiative. Pediatr Qual Saf. 2020 Feb 13;5(2):e255. doi: 10.1097/pq9.0000000000000255. eCollection 2020 Mar-Apr.
Mortimer T, Burzynski J, Kesselman M, Vallance J, Hansen G. Apneic Oxygenation during Rapid Sequence Intubation in Critically Ill Children. J Pediatr Intensive Care. 2016 Mar;5(1):28-31. doi: 10.1055/s-0035-1568149. Epub 2015 Nov 18.
Scott A, Chua O, Mitchell W, Vlok R, Melhuish T, White L. Apneic Oxygenation for Pediatric Endotracheal Intubation: A Narrative Review. J Pediatr Intensive Care. 2019 Sep;8(3):117-121. doi: 10.1055/s-0039-1678552. Epub 2019 Feb 13.
Kurth CD, Thayer WS. A multiwavelength frequency-domain near-infrared cerebral oximeter. Phys Med Biol. 1999 Mar;44(3):727-40. doi: 10.1088/0031-9155/44/3/015.
Kurth CD, Steven JL, Montenegro LM, Watzman HM, Gaynor JW, Spray TL, Nicolson SC. Cerebral oxygen saturation before congenital heart surgery. Ann Thorac Surg. 2001 Jul;72(1):187-92. doi: 10.1016/s0003-4975(01)02632-7.
Kurth CD, Levy WJ, McCann J. Near-infrared spectroscopy cerebral oxygen saturation thresholds for hypoxia-ischemia in piglets. J Cereb Blood Flow Metab. 2002 Mar;22(3):335-41. doi: 10.1097/00004647-200203000-00011.
Tsuji M, Saul JP, du Plessis A, Eichenwald E, Sobh J, Crocker R, Volpe JJ. Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants. Pediatrics. 2000 Oct;106(4):625-32. doi: 10.1542/peds.106.4.625.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
4637/25-06-2019
Identifier Type: -
Identifier Source: org_study_id