Multicentric Study for External Validation of a Deep Learning Model for Mammographic Breast Density Categorization

NCT ID: NCT05021055

Last Updated: 2021-08-25

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

UNKNOWN

Total Enrollment

277 participants

Study Classification

OBSERVATIONAL

Study Start Date

2021-09-30

Study Completion Date

2022-07-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The correct categorization of breast density is essential to adapt the diagnostic examination to the needs of each patient. Assessment of breast density is performed visually by radiologists. Some authors have detected that this method involves considerable intra and interobserver variability. On the other hand, automated systems for measuring breast density are becoming more and more frequent. Machine learning is a domain of Artificial Intelligence, which comprises the process of developing systems with the ability to learn and make predictions using data. These systems are designed to aid healthcare professional decision making. In the present work, the multicenter study of external validation of a tool based on deep learning for the categorization of mammographic breast density is proposed.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

The correct categorization of breast density is essential to adapt the diagnostic examination to the needs of each patient. Assessment of breast density is performed visually by radiologists. Some authors have detected that this method involves considerable intra and interobserver variability. On the other hand, automated systems for measuring breast density are becoming more and more frequent. Consequently, in clinical practice, breast density is reported from the assessment carried out by specialists with the support of these systems. But there are few studies about the use, concordance and perception of usefulness of professionals on these tools. A study carried out at the Hospital Italiano de Buenos Aires reported a moderate to almost perfect inter- and intra-observer agreement among radiologists and a moderate concordance between the categorization carried out by experts and that carried out by commercial software of a digital mammography machine. Machine learning is a domain of Artificial Intelligence, which comprises the process of developing systems with the ability to learn and make predictions using data. Once a system designed to aid healthcare professional decision making is developed, it must be validated. In 2019, an internal validation of a tool based on deep learning techniques was carried out for the automatic categorization of mammographic breast density. The tool reached a very good interobserver agreement, kappa = 0.64 (95% CI 0.58-0.69), when compared with the performance of the professionals. It reached a sensitivity of 83.2 (CI: 76.9-88.3) and a specificity of 88.4 (83.9-92.0.) In the present work, the multicenter study of external validation of a tool based on deep learning for the categorization of mammographic breast density is proposed. The evaluation of this tool will be carried out in two external institutions: Hospital Alemán and Fundación Científica del Sur.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Breast Cancer

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

OTHER

Study Time Perspective

PROSPECTIVE

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Mammograms included in the study should meet the following criteria:

* Female patients of 40 years of age or more.
* To have at least one screening mammography exam performed at Saint John's
* Cancer Institute during the study period. These exams will be included regardless of the brand of the mammography equipment.
* Mammograms should be performed with digital equipment.

Exclusion Criteria

* Mammograms with the following criteria will be excluded from the study:

* Patients with gigantomastia, defined by the need for more than one image of each mammographic view (mediolateral oblique and craniocaudal) to evaluate the entire breast volume.
* Patients with breast implants.
* Patients with a history of breast surgery.
Eligible Sex

ALL

Accepts Healthy Volunteers

Yes

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Hospital Italiano de Buenos Aires

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Daniel R Luna, MD

Role: PRINCIPAL_INVESTIGATOR

Hospital Italiano de Buenos Aires

Central Contacts

Reach out to these primary contacts for questions about participation or study logistics.

Andrés Brandan

Role: CONTACT

+5493816212804

References

Explore related publications, articles, or registry entries linked to this study.

Winkler NS, Raza S, Mackesy M, Birdwell RL. Breast density: clinical implications and assessment methods. Radiographics. 2015 Mar-Apr;35(2):316-24. doi: 10.1148/rg.352140134.

Reference Type BACKGROUND
PMID: 25763719 (View on PubMed)

Ciatto S, Visioli C, Paci E, Zappa M. Breast density as a determinant of interval cancer at mammographic screening. Br J Cancer. 2004 Jan 26;90(2):393-6. doi: 10.1038/sj.bjc.6601548.

Reference Type BACKGROUND
PMID: 14735182 (View on PubMed)

Wanders JOP, Holland K, Karssemeijer N, Peeters PHM, Veldhuis WB, Mann RM, van Gils CH. The effect of volumetric breast density on the risk of screen-detected and interval breast cancers: a cohort study. Breast Cancer Res. 2017 Jun 5;19(1):67. doi: 10.1186/s13058-017-0859-9.

Reference Type BACKGROUND
PMID: 28583146 (View on PubMed)

Strand F, Azavedo E, Hellgren R, Humphreys K, Eriksson M, Shepherd J, Hall P, Czene K. Localized mammographic density is associated with interval cancer and large breast cancer: a nested case-control study. Breast Cancer Res. 2019 Jan 22;21(1):8. doi: 10.1186/s13058-019-1099-y.

Reference Type BACKGROUND
PMID: 30670066 (View on PubMed)

Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E, Jong RA, Hislop G, Chiarelli A, Minkin S, Yaffe MJ. Mammographic density and the risk and detection of breast cancer. N Engl J Med. 2007 Jan 18;356(3):227-36. doi: 10.1056/NEJMoa062790.

Reference Type BACKGROUND
PMID: 17229950 (View on PubMed)

Swann CA, Kopans DB, McCarthy KA, White G, Hall DA. Mammographic density and physical assessment of the breast. AJR Am J Roentgenol. 1987 Mar;148(3):525-6. doi: 10.2214/ajr.148.3.525.

Reference Type BACKGROUND
PMID: 3492880 (View on PubMed)

A L Mousa DS, Ryan EA, Mello-Thoms C, Brennan PC. What effect does mammographic breast density have on lesion detection in digital mammography? Clin Radiol. 2014 Apr;69(4):333-41. doi: 10.1016/j.crad.2013.11.014. Epub 2014 Jan 11.

Reference Type BACKGROUND
PMID: 24424328 (View on PubMed)

Carreira Gomez MC, Estrada Blan MC. What we need to know about dense breasts: implications for breast cancer screening. Radiologia. 2016 Nov-Dec;58(6):421-426. doi: 10.1016/j.rx.2016.08.002. Epub 2016 Oct 15. English, Spanish.

Reference Type BACKGROUND
PMID: 27751504 (View on PubMed)

McCormack VA, dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2006 Jun;15(6):1159-69. doi: 10.1158/1055-9965.EPI-06-0034.

Reference Type BACKGROUND
PMID: 16775176 (View on PubMed)

Sprague BL, Conant EF, Onega T, Garcia MP, Beaber EF, Herschorn SD, Lehman CD, Tosteson AN, Lacson R, Schnall MD, Kontos D, Haas JS, Weaver DL, Barlow WE; PROSPR Consortium. Variation in Mammographic Breast Density Assessments Among Radiologists in Clinical Practice: A Multicenter Observational Study. Ann Intern Med. 2016 Oct 4;165(7):457-464. doi: 10.7326/M15-2934. Epub 2016 Jul 19.

Reference Type BACKGROUND
PMID: 27428568 (View on PubMed)

Eom HJ, Cha JH, Kang JW, Choi WJ, Kim HJ, Go E. Comparison of variability in breast density assessment by BI-RADS category according to the level of experience. Acta Radiol. 2018 May;59(5):527-532. doi: 10.1177/0284185117725369. Epub 2017 Aug 2.

Reference Type BACKGROUND
PMID: 28766978 (View on PubMed)

Alikhassi A, Esmaili Gourabi H, Baikpour M. Comparison of inter- and intra-observer variability of breast density assessments using the fourth and fifth editions of Breast Imaging Reporting and Data System. Eur J Radiol Open. 2018 Apr 20;5:67-72. doi: 10.1016/j.ejro.2018.04.002. eCollection 2018.

Reference Type BACKGROUND
PMID: 29707614 (View on PubMed)

Melnikow J, Fenton JJ, Whitlock EP, Miglioretti DL, Weyrich MS, Thompson JH, Shah K. Supplemental Screening for Breast Cancer in Women With Dense Breasts: A Systematic Review for the U.S. Preventive Services Task Force. Ann Intern Med. 2016 Feb 16;164(4):268-78. doi: 10.7326/M15-1789. Epub 2016 Jan 12.

Reference Type BACKGROUND
PMID: 26757021 (View on PubMed)

Jeffers AM, Sieh W, Lipson JA, Rothstein JH, McGuire V, Whittemore AS, Rubin DL. Breast Cancer Risk and Mammographic Density Assessed with Semiautomated and Fully Automated Methods and BI-RADS. Radiology. 2017 Feb;282(2):348-355. doi: 10.1148/radiol.2016152062. Epub 2016 Sep 5.

Reference Type BACKGROUND
PMID: 27598536 (View on PubMed)

Ciatto S, Bernardi D, Calabrese M, Durando M, Gentilini MA, Mariscotti G, Monetti F, Moriconi E, Pesce B, Roselli A, Stevanin C, Tapparelli M, Houssami N. A first evaluation of breast radiological density assessment by QUANTRA software as compared to visual classification. Breast. 2012 Aug;21(4):503-6. doi: 10.1016/j.breast.2012.01.005. Epub 2012 Jan 27.

Reference Type BACKGROUND
PMID: 22285387 (View on PubMed)

Alonzo-Proulx O, Jong RA, Yaffe MJ. Volumetric breast density characteristics as determined from digital mammograms. Phys Med Biol. 2012 Nov 21;57(22):7443-57. doi: 10.1088/0031-9155/57/22/7443. Epub 2012 Oct 24.

Reference Type BACKGROUND
PMID: 23093428 (View on PubMed)

Martinez Gomez I, Casals El Busto M, Anton Guirao J, Ruiz Perales F, Llobet Azpitarte R. Semiautomatic estimation of breast density with DM-Scan software. Radiologia. 2014 Sep-Oct;56(5):429-34. doi: 10.1016/j.rx.2012.11.007. Epub 2013 Mar 13. English, Spanish.

Reference Type BACKGROUND
PMID: 23489767 (View on PubMed)

Gao J, Warren R, Warren-Forward H, Forbes JF. Reproducibility of visual assessment on mammographic density. Breast Cancer Res Treat. 2008 Mar;108(1):121-7. doi: 10.1007/s10549-007-9581-0. Epub 2007 Jul 7.

Reference Type BACKGROUND
PMID: 17616811 (View on PubMed)

Pesce K, Tajerian M, Chico MJ, Swiecicki MP, Boietti B, Frangella MJ, Benitez S. Interobserver and intraobserver variability in determining breast density according to the fifth edition of the BI-RADS(R) Atlas. Radiologia (Engl Ed). 2020 Nov-Dec;62(6):481-486. doi: 10.1016/j.rx.2020.04.006. Epub 2020 May 31. English, Spanish.

Reference Type BACKGROUND
PMID: 32493654 (View on PubMed)

Do S, Song KD, Chung JW. Basics of Deep Learning: A Radiologist's Guide to Understanding Published Radiology Articles on Deep Learning. Korean J Radiol. 2020 Jan;21(1):33-41. doi: 10.3348/kjr.2019.0312.

Reference Type BACKGROUND
PMID: 31920027 (View on PubMed)

Liu Y, Chen PC, Krause J, Peng L. How to Read Articles That Use Machine Learning: Users' Guides to the Medical Literature. JAMA. 2019 Nov 12;322(18):1806-1816. doi: 10.1001/jama.2019.16489.

Reference Type BACKGROUND
PMID: 31714992 (View on PubMed)

Dontchos BN, Yala A, Barzilay R, Xiang J, Lehman CD. External Validation of a Deep Learning Model for Predicting Mammographic Breast Density in Routine Clinical Practice. Acad Radiol. 2021 Apr;28(4):475-480. doi: 10.1016/j.acra.2019.12.012. Epub 2020 Feb 20.

Reference Type BACKGROUND
PMID: 32089465 (View on PubMed)

Related Links

Access external resources that provide additional context or updates about the study.

https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/Bi-Rads

Sickles EA, D'Orsi CJ, Bassett LW, Appleton CM, Berg WA, Burnside ES, et al. ACR BI-RADS® Atlas, Breast imaging reporting and data system. Reston, VA: American College of Radiology. 2013;39-48.

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

4927

Identifier Type: OTHER

Identifier Source: secondary_id

6077

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.