Effect of Pelvic Radiotherapy on the Intestinal Microbiome and Metabolome
NCT ID: NCT04995809
Last Updated: 2025-03-12
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
18 participants
OBSERVATIONAL
2021-07-05
2023-07-21
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
There is a link between the changes in the number and type of gut bacteria (the microbiome) in some bowel conditions and it is possible to test for these different bacteria in a simple stool sample using genetic testing. Also gut bacteria produce different gases in the stool called "volatile organic compounds" (VOCs), which can be measured in stool samples. Specific VOC patterns have been seen in other bowel conditions and small studies suggesting that there are specific VOC and gut bacteria patterns in the stool of those undergoing pelvic radiotherapy which may help to identify people who will get difficult bowel problems. Diet can change the microbiome/VOCs so diet change could improve bowel symptoms after radiotherapy.
The investigators would like to test stool samples of patients with womb, cervix or bladder cancer having pelvic radiotherapy to see if there are differences in the number/type of gut bacteria and VOCs between those who get severe bowel symptoms compared to those with mild bowel symptoms. They also want to see whether these differences in VOCs or gut bacteria can tell who will develop severe bowel symptoms during or after radiotherapy and determine the effect of diet.
The first step is to run the study on a small scale to confirm that a larger study would work. This will make sure the investigators can recruit and consent people safely and will test the best ways of measuring bowels symptoms using several questionnaire options. They will collect the information needed to work out how many people would be needed in a large trial to fully test the theory. Ultimately, the investigators would like to use differences in the number/type of gut bacteria and VOCs to find ways to better prevent and treat bowel problems after pelvic radiotherapy.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Prospective Study in Pelvic Radiotherapy Patients
NCT00220181
Oral Probiotics on Radiation Enteritis Stage Ⅱ Induced by Pelvic Concurrent Chemoradiotherapy
NCT05032027
Fecal Microbiota Transplantation for Radiation Enteritis
NCT03516461
Low-Fiber Diet or High-Fiber Diet in Preventing Bowel Side Effects in Patients Undergoing Radiation Therapy for Gynecological Cancer, Bladder Cancer, Colorectal Cancer, or Anal Cancer
NCT01170299
Care of Cancer Patients With Bowel Injury Caused by Radiation Therapy to the Pelvis
NCT00737230
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Rationale GI-toxicity is a significant cause of morbidity both during and after pelvic radiotherapy to the extent that it adversely affects quality of life. There is a paucity of research into this condition. The metabolomic and microbiomic profile of patients undergoing pelvic radiotherapy and the link with GI-toxicity has not been fully explored. Studies suggest radiation alters the gut microbiome, altering microbial diversity. Higher pre-radiotherapy diversity has been seen in those with no GI symptoms with reducing diversity as GI-toxicity increases and an association between low microbial diversity and severity of chronic GI-toxicity. Dietary change can alter microbial composition. Unique VOCs patterns have been identified in specific GI diseases. Early data suggest differences in VOCs between patients with high vs low levels of GI-toxicity. Metabolomic and microbiomic profiling and manipulation has the potential to advance understanding of disease-related pathways to predict, prevent and treat GI-toxicity.
By comparing samples collected pre and post radiotherapy the investigators aim to identify potential biomarkers. They are going to integrate metadata indicating a negative GI response to the therapy, i.e. GI toxicity symptoms from validated questionnaires, with microbial community data and VOCs data in order to identify markers (VOCs or bacteria) that increase with symptoms. They will also identify which species make patients more susceptible to negative outcomes by analysing the community pre-treatment.
Previous literature using culture based methods showed an increase in E. coli and Staphylococcus spp. and the investigators will determine whether they can confirm this. In terms of VOCs, they will look for markers of inflammation, e.g. aldehydes. It has been proposed that there are similarities between radiation-induced GI-toxicity and IBD, particularly Crohn's disease, therefore it would be interesting to see whether there is a similar dysbiosis of the microbial community and VOCs profile to that observed in Crohn's disease, i.e. whether decreased species diversity, increased Bacteroides species and Enterobacteriaceae coupled with a decrease in Faecal bacterium are also observed in patients with severe GI toxicity symptoms.
Potential interventions to modify the gut microbiome, e.g. diet, pre/probiotics, synthetic faecal microbiota transplantation, are in wide clinical research use currently in other related clinical areas, e.g. inflammatory bowel disease, and would be the types of interventions that may be indicated by information from this work and the subsequent definitive study.
The objectives of the subsequent definitive study are as follows:
1. Determine the differences in VOC profile/microbiome in patients with the most severe vs least severe GI-toxicity at 4 weeks and 6 months.
2. Determine the differences in VOC profile/microbiome at baseline in patients who develop the most severe vs least severe GI-toxicity at 4 weeks and 6 months.
3. Characterise disease-related pathways for GI-toxicity to identify potential therapeutic targets, including dietary.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
OTHER
PROSPECTIVE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
EPRIMM study participants
No intervention: Questionnaires, food diaries and stool sample.
No interventions assigned to this group
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* ≥18 years.
* Able to consent.
* Able to complete questionnaires.
Exclusion Criteria
* Abdominopelvic surgery within preceding 4 weeks
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University of Liverpool
OTHER
University of Manchester
OTHER
Wythenshawe Hospital
OTHER
The Christie NHS Foundation Trust
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Caroline Henson, MBBS PhD
Role: PRINCIPAL_INVESTIGATOR
The Christie NHS Foundation Trust
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Louise James
Manchester, , United Kingdom
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Wedlake L, Thomas K, McGough C, Andreyev HJ. Small bowel bacterial overgrowth and lactose intolerance during radical pelvic radiotherapy: An observational study. Eur J Cancer. 2008 Oct;44(15):2212-7. doi: 10.1016/j.ejca.2008.07.018. Epub 2008 Aug 27.
Andreyev J. Gastrointestinal symptoms after pelvic radiotherapy: a new understanding to improve management of symptomatic patients. Lancet Oncol. 2007 Nov;8(11):1007-17. doi: 10.1016/S1470-2045(07)70341-8.
Gami B, Harrington K, Blake P, Dearnaley D, Tait D, Davies J, Norman AR, Andreyev HJ. How patients manage gastrointestinal symptoms after pelvic radiotherapy. Aliment Pharmacol Ther. 2003 Nov 15;18(10):987-94. doi: 10.1046/j.1365-2036.2003.01760.x.
Nam YD, Kim HJ, Seo JG, Kang SW, Bae JW. Impact of pelvic radiotherapy on gut microbiota of gynecological cancer patients revealed by massive pyrosequencing. PLoS One. 2013 Dec 18;8(12):e82659. doi: 10.1371/journal.pone.0082659. eCollection 2013.
Lam V, Moulder JE, Salzman NH, Dubinsky EA, Andersen GL, Baker JE. Intestinal microbiota as novel biomarkers of prior radiation exposure. Radiat Res. 2012 May;177(5):573-83. doi: 10.1667/rr2691.1. Epub 2012 Mar 23.
Kim YS, Kim J, Park SJ. High-throughput 16S rRNA gene sequencing reveals alterations of mouse intestinal microbiota after radiotherapy. Anaerobe. 2015 Jun;33:1-7. doi: 10.1016/j.anaerobe.2015.01.004. Epub 2015 Jan 16.
Manichanh C, Varela E, Martinez C, Antolin M, Llopis M, Dore J, Giralt J, Guarner F, Malagelada JR. The gut microbiota predispose to the pathophysiology of acute postradiotherapy diarrhea. Am J Gastroenterol. 2008 Jul;103(7):1754-61. doi: 10.1111/j.1572-0241.2008.01868.x. Epub 2008 Jun 28.
Goudarzi M, Mak TD, Jacobs JP, Moon BH, Strawn SJ, Braun J, Brenner DJ, Fornace AJ Jr, Li HH. An Integrated Multi-Omic Approach to Assess Radiation Injury on the Host-Microbiome Axis. Radiat Res. 2016 Sep;186(3):219-34. doi: 10.1667/RR14306.1. Epub 2016 Aug 11.
Wang A, Ling Z, Yang Z, Kiela PR, Wang T, Wang C, Cao L, Geng F, Shen M, Ran X, Su Y, Cheng T, Wang J. Gut microbial dysbiosis may predict diarrhea and fatigue in patients undergoing pelvic cancer radiotherapy: a pilot study. PLoS One. 2015 May 8;10(5):e0126312. doi: 10.1371/journal.pone.0126312. eCollection 2015.
Reis Ferreira M, Andreyev HJN, Mohammed K, Truelove L, Gowan SM, Li J, Gulliford SL, Marchesi JR, Dearnaley DP. Microbiota- and Radiotherapy-Induced Gastrointestinal Side-Effects (MARS) Study: A Large Pilot Study of the Microbiome in Acute and Late-Radiation Enteropathy. Clin Cancer Res. 2019 Nov 1;25(21):6487-6500. doi: 10.1158/1078-0432.CCR-19-0960. Epub 2019 Jul 25.
Cui M, Xiao H, Li Y, Zhou L, Zhao S, Luo D, Zheng Q, Dong J, Zhao Y, Zhang X, Zhang J, Lu L, Wang H, Fan S. Faecal microbiota transplantation protects against radiation-induced toxicity. EMBO Mol Med. 2017 Apr;9(4):448-461. doi: 10.15252/emmm.201606932.
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014 Jan 23;505(7484):559-63. doi: 10.1038/nature12820. Epub 2013 Dec 11.
Reade S, Mayor A, Aggio R, Khalid T, Pritchard DM, Ewer AK, et al. Optimisation of Sample Preparation for Direct SPME-GC-MS Analysis of Murine and Human Faecal Volatile Organic Compounds for Metabolomic Studies. J Anal Bioanal Tech. 2014;5(2).
Xu X, Xu P, Ma C, Tang J, Zhang X. Gut microbiota, host health, and polysaccharides. Biotechnol Adv. 2013 Mar-Apr;31(2):318-37. doi: 10.1016/j.biotechadv.2012.12.009. Epub 2012 Dec 30.
Hough R, Archer D, Probert C. A comparison of sample preparation methods for extracting volatile organic compounds (VOCs) from equine faeces using HS-SPME. Metabolomics. 2018;14(2):19. doi: 10.1007/s11306-017-1315-7. Epub 2018 Jan 4.
Mikami T, Aoki M, Kimura T. The application of mass spectrometry to proteomics and metabolomics in biomarker discovery and drug development. Curr Mol Pharmacol. 2012 Jun;5(2):301-16. doi: 10.2174/1874467211205020301.
Probert CS. Role of faecal gas analysis for the diagnosis of IBD. Biochem Soc Trans. 2011 Aug;39(4):1079-80. doi: 10.1042/BST0391079.
Probert CS, Ahmed I, Khalid T, Johnson E, Smith S, Ratcliffe N. Volatile organic compounds as diagnostic biomarkers in gastrointestinal and liver diseases. J Gastrointestin Liver Dis. 2009 Sep;18(3):337-43.
Probert CS, Jones PR, Ratcliffe NM. A novel method for rapidly diagnosing the causes of diarrhoea. Gut. 2004 Jan;53(1):58-61. doi: 10.1136/gut.53.1.58.
Covington JA, Wedlake L, Andreyev J, Ouaret N, Thomas MG, Nwokolo CU, Bardhan KD, Arasaradnam RP. The detection of patients at risk of gastrointestinal toxicity during pelvic radiotherapy by electronic nose and FAIMS: a pilot study. Sensors (Basel). 2012 Sep 26;12(10):13002-18. doi: 10.3390/s121013002.
Sokol H, Adolph TE. The microbiota: an underestimated actor in radiation-induced lesions? Gut. 2018 Jan;67(1):1-2. doi: 10.1136/gutjnl-2017-314279. Epub 2017 May 4. No abstract available.
Stringer AM, Al-Dasooqi N, Bowen JM, Tan TH, Radzuan M, Logan RM, Mayo B, Keefe DM, Gibson RJ. Biomarkers of chemotherapy-induced diarrhoea: a clinical study of intestinal microbiome alterations, inflammation and circulating matrix metalloproteinases. Support Care Cancer. 2013 Jul;21(7):1843-52. doi: 10.1007/s00520-013-1741-7. Epub 2013 Feb 10.
Ferreira MR, Muls A, Dearnaley DP, Andreyev HJ. Microbiota and radiation-induced bowel toxicity: lessons from inflammatory bowel disease for the radiation oncologist. Lancet Oncol. 2014 Mar;15(3):e139-47. doi: 10.1016/S1470-2045(13)70504-7.
Related Links
Access external resources that provide additional context or updates about the study.
Lay summary of EPRIMM results
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
21_DOG13_32
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.