Retinal Microanatomy in Retinopathy of Prematurity (BabySTEPS2)
NCT ID: NCT04995341
Last Updated: 2025-10-06
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
NA
236 participants
INTERVENTIONAL
2021-08-16
2026-03-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Ultrasound to Detect Evidence for Retinal Detachment in Retinopathy of Prematurity
NCT00279669
Preterm Infants REtinalMicrovascular Alterations by Means of OCT Angiography
NCT05699668
Non-Invasive Detection of Tissue Oxygen Deprivation in Premature Infants With Patent Ductus Arteriosus.
NCT03277768
Study of the Implication of Omega-3 Polyunsaturated Fatty Acids in Retinopathy of Prematurity in New-born Infants
NCT02820662
Supplemental Therapeutic Oxygen for Prethreshold Retinopathy of Prematurity
NCT01203436
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
This research builds on our group's ability to reliably capture and process non-contact, infrared optical coherence tomography (OCT) and OCT-angiography of retinal microanatomy and microvasculature at high speed, across a wide field of view, and at the bedside in preterm infants. Our overall objectives are threefold: first, to evaluate infant microanatomy and microvascular flow findings relevant to vision and neurodevelopmental outcomes in children; second, to translate and test our imaging achievements for real-world use by nurses at the bedside and for better clinical insight and feedback; and third, to gather additional data in eyes that progress to treatment and dive deeper into the insight that they provide into pathways of disease in ROP. The investigational OCT imaging will be used in this research to gather information that is otherwise not accessible to the physician. This research will lay the groundwork for future use of infant OCT markers to guide care.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NON_RANDOMIZED
SINGLE_GROUP
OTHER
DOUBLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Cohort 1: Functional and structural outcomes in children after bedside OCT imaging in infancy
109 pediatric participants who were previously enrolled in BabySTEPS1 from July 22, 2016 - December 30, 2020 will be enrolled for follow-up neurodevelopmental testing, visual acuity, visual function testing and investigational retinal imaging
Investigational ultracompact OCT and OCTA system
Handheld bedside retinal OCT and OCT angiography imaging with an investigational portable system with ultracompact handpiece
Cohort 2: Test of bedside OCT imaging data to predict RW-ROP or ROP progression
294 infants at risk for retinopathy of prematurity: 176 will be enrolled and have investigational bedside OCT retinal imaging, and their data will be combined with that from 118 infants who had similar imaging in BabySTEPS1 for analysis of the total group versus the indirect ophthalmoscopic clinical exam data.
Investigational ultracompact OCT and OCTA system
Handheld bedside retinal OCT and OCT angiography imaging with an investigational portable system with ultracompact handpiece
Cohort 3: Comparison of ROP imaging with investigational OCT versus retinal camera
102 infants, who are a sub-group of the 132 enrolled in Cohort 2, will also have imaging with a conventional, commercially available, retinal camera system to compare utility, stress, and prediction and documentation of referral-warranted ROP between the camera images and those from investigational OCT.
Investigational ultracompact OCT and OCTA system
Handheld bedside retinal OCT and OCT angiography imaging with an investigational portable system with ultracompact handpiece
retinal photographs
retinal photographs with a commercial portable bedside widefield fundus camera system
Cohort 4: Adult and pediatric participants enrolled for imaging during system development
12 awake healthy adult controls and 6 pediatric participants undergoing examination under anesthesia in the operating room will be imaged with the investigational bedside OCT for the purpose of technological development.
Investigational ultracompact OCT and OCTA system
Handheld bedside retinal OCT and OCT angiography imaging with an investigational portable system with ultracompact handpiece
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Investigational ultracompact OCT and OCTA system
Handheld bedside retinal OCT and OCT angiography imaging with an investigational portable system with ultracompact handpiece
retinal photographs
retinal photographs with a commercial portable bedside widefield fundus camera system
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Parent/Legal Guardian is able and willing to consent to study participation with follow up approximately between 4.5 and 5 years of age (consent available in Spanish\* and English) (SA 1 only)
* Parent/Legal Guardian is able and willing to consent to study participation for the infant (SA 2 and 2c only)
* Infant/child undergoing clinically-indicated examination under anesthesia that may or may not have eye pathology (SA 2 only)
* Infant inborn or outborn at (SA 2 only):
* Duke Hospital (Years 1, 2 and 3) with birth weight ≤1000 grams, and/or 20 0/7 to 28/ 6/7 (\<29 weeks) gestational age
* Duke Hospital (Years 1, 2 and 3) at high risk to require treatment for ROP irrespective of birth weight and gestational age (e.g. pre-plus, severe ROP in zone 1, APROP, etc.)
* Duke Regional Hospital (Years 4 and 5) that meets the American Association of Pediatrics eligibility of ROP screening (Infants with a birth weight of ≤1500 g or gestational age of 30 weeks)
* Adults (over the age of 18 years) that may or may not have eye pathology (SA 2 only)
Exclusion Criteria
* Adult participant or infant/child has a health or eye condition that preclude eye examination or retinal imaging (e.g. corneal opacity such as with Peter's anomaly or cataract) (SA2 only)
* Infant has a health condition, other than prematurity, that has a profound impact on brain development (e.g. anencephaly) (SA2 only)
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University of Pennsylvania
OTHER
National Eye Institute (NEI)
NIH
Duke University
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Cynthia A Toth, MD
Role: PRINCIPAL_INVESTIGATOR
Duke University Eye Center
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Duke University Eye Center
Durham, North Carolina, United States
University of Pennsylvania, Center for Preventive Ophthalmology and Biostatistics
Philadelphia, Pennsylvania, United States
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Mangalesh S, Chen X, Tran-Viet D, Viehland C, Freedman SF, Toth CA. ASSESSMENT OF THE RETINAL STRUCTURE IN CHILDREN WITH INCONTINENTIA PIGMENTI. Retina. 2017 Aug;37(8):1568-1574. doi: 10.1097/IAE.0000000000001395.
Lee J, El-Dairi MA, Tran-Viet D, Mangalesh S, Dandridge A, Jiramongkolchai K, Viehland C, Toth CA. LONGITUDINAL CHANGES IN THE OPTIC NERVE HEAD AND RETINA OVER TIME IN VERY YOUNG CHILDREN WITH FAMILIAL EXUDATIVE VITREORETINOPATHY. Retina. 2019 Jan;39(1):98-110. doi: 10.1097/IAE.0000000000001930.
Chen X, Mangalesh S, Tran-Viet D, Freedman SF, Vajzovic L, Toth CA. Fluorescein Angiographic Characteristics of Macular Edema During Infancy. JAMA Ophthalmol. 2018 May 1;136(5):538-542. doi: 10.1001/jamaophthalmol.2018.0467.
Hsu ST, Chen X, House RJ, Kelly MP, Toth CA, Vajzovic L. Visualizing Macular Microvasculature Anomalies in 2 Infants With Treated Retinopathy of Prematurity. JAMA Ophthalmol. 2018 Dec 1;136(12):1422-1424. doi: 10.1001/jamaophthalmol.2018.3926. No abstract available.
Chen X, Mangalesh S, Dandridge A, Tran-Viet D, Wallace DK, Freedman SF, Toth CA. Spectral-Domain OCT Findings of Retinal Vascular-Avascular Junction in Infants with Retinopathy of Prematurity. Ophthalmol Retina. 2018 Sep;2(9):963-971. doi: 10.1016/j.oret.2018.02.001. Epub 2018 Mar 21.
Hsu ST, Chen X, Ngo HT, House RJ, Kelly MP, Enyedi LB, Materin MA, El-Dairi MA, Freedman SF, Toth CA, Vajzovic L. Imaging Infant Retinal Vasculature with OCT Angiography. Ophthalmol Retina. 2019 Jan;3(1):95-96. doi: 10.1016/j.oret.2018.06.017. Epub 2018 Jul 26. No abstract available.
Mangalesh S, Bleicher ID, Chen X, Viehland C, LaRocca F, Izatt JA, Freedman SF, Hartnett ME, Toth CA. Three-dimensional pattern of extraretinal neovascular development in retinopathy of prematurity. Graefes Arch Clin Exp Ophthalmol. 2019 Apr;257(4):677-688. doi: 10.1007/s00417-019-04274-6. Epub 2019 Feb 21.
Viehland C, Chen X, Tran-Viet D, Jackson-Atogi M, Ortiz P, Waterman G, Vajzovic L, Toth CA, Izatt JA. Ergonomic handheld OCT angiography probe optimized for pediatric and supine imaging. Biomed Opt Express. 2019 Apr 29;10(5):2623-2638. doi: 10.1364/BOE.10.002623. eCollection 2019 May 1.
Smith LEH, Hellstrom A, Stahl A, Fielder A, Chambers W, Moseley J, Toth C, Wallace D, Darlow BA, Aranda JV, Hallberg B, Davis JM; Retinopathy of Prematurity Workgroup of the International Neonatal Consortium. Development of a Retinopathy of Prematurity Activity Scale and Clinical Outcome Measures for Use in Clinical Trials. JAMA Ophthalmol. 2019 Mar 1;137(3):305-311. doi: 10.1001/jamaophthalmol.2018.5984.
Hsu ST, Ngo HT, Stinnett SS, Cheung NL, House RJ, Kelly MP, Chen X, Enyedi LB, Prakalapakorn SG, Materin MA, El-Dairi MA, Jaffe GJ, Freedman SF, Toth CA, Vajzovic L. Assessment of Macular Microvasculature in Healthy Eyes of Infants and Children Using OCT Angiography. Ophthalmology. 2019 Dec;126(12):1703-1711. doi: 10.1016/j.ophtha.2019.06.028. Epub 2019 Jul 15.
Chen X, Viehland C, Tran-Viet D, Prakalapakorn SG, Freedman SF, Izatt JA, Toth CA. Capturing Macular Vascular Development in an Infant With Retinopathy of Prematurity. JAMA Ophthalmol. 2019 Sep 1;137(9):1083-1086. doi: 10.1001/jamaophthalmol.2019.2165. No abstract available.
Wang KL, Chen X, Stinnett S, Tai V, Winter KP, Tran-Viet D, Toth CA. Understanding the variability of handheld spectral-domain optical coherence tomography measurements in supine infants. PLoS One. 2019 Dec 11;14(12):e0225960. doi: 10.1371/journal.pone.0225960. eCollection 2019.
Mangalesh S, Tran-Viet D, Pizoli C, Tai V, El-Dairi MA, Chen X, Viehland C, Edwards L, Finkle J, Freedman SF, Toth CA. Subclinical Retinal versus Brain Findings in Infants with Hypoxic Ischemic Encephalopathy. Graefes Arch Clin Exp Ophthalmol. 2020 Sep;258(9):2039-2049. doi: 10.1007/s00417-020-04738-0. Epub 2020 May 29.
Seely KR, Wang KL, Tai V, Prakalapakorn SG, Chiu SJ, Viehland C, Grace S, Izatt JA, Freedman SF, Toth CA. Auto-Processed Retinal Vessel Shadow View Images From Bedside Optical Coherence Tomography to Evaluate Plus Disease in Retinopathy of Prematurity. Transl Vis Sci Technol. 2020 Aug 7;9(9):16. doi: 10.1167/tvst.9.9.16. eCollection 2020 Aug.
Chen X, Imperio R, Seely KR, Viehland C, Izatt JA, Prakalapakorn SG, Freedman SF, Toth CA. Slow progressive perifoveal vascular formation in an infant with aggressive posterior retinopathy of prematurity. J AAPOS. 2020 Oct;24(5):323-326. doi: 10.1016/j.jaapos.2020.07.007. Epub 2020 Oct 9.
O'Sullivan ML, Ying GS, Mangalesh S, Tai V, Divecha HR, Winter KP, Toth CA, Chen X; BabySTEPS Group. Foveal Differentiation and Inner Retinal Displacement Are Arrested in Extremely Premature Infants. Invest Ophthalmol Vis Sci. 2021 Feb 1;62(2):25. doi: 10.1167/iovs.62.2.25.
Chen X, Tai V, McGeehan B, Ying GS, Viehland C, Imperio R, Winter KP, Raynor W, Tran-Viet D, Mangalesh S, Maguire MG, Toth CA; BabySTEPS Group. Repeatability and Reproducibility of Axial and Lateral Measurements on Handheld Optical Coherence Tomography Systems Compared with Tabletop System. Transl Vis Sci Technol. 2020 Oct 21;9(11):25. doi: 10.1167/tvst.9.11.25. eCollection 2020 Oct.
Shen LL, Mangalesh S, McGeehan B, Tai V, Sarin N, El-Dairi MA, Freedman SF, Maguire MG, Toth CA; BabySTEPS Group. Birth Weight Is a Significant Predictor of Retinal Nerve Fiber Layer Thickness at 36 Weeks Postmenstrual Age in Preterm Infants. Am J Ophthalmol. 2021 Feb;222:41-53. doi: 10.1016/j.ajo.2020.08.043. Epub 2020 Sep 4.
Mangalesh S, Wong BM, Chen X, Tran-Viet D, Stinnett SS, Sarin N, Winter KP, Vajzovic L, Freedman SF, Toth CA. Morphological characteristics of early- versus late-onset macular edema in preterm infants. J AAPOS. 2020 Oct;24(5):303-306. doi: 10.1016/j.jaapos.2020.06.006. Epub 2020 Sep 15.
Mangalesh S, McGeehan B, Tai V, Chen X, Tran-Viet D, Vajzovic L, Viehland C, Izatt JA, Cotten CM, Freedman SF, Maguire MG, Toth CA; Study of Eye Imaging in Preterm Infants Group. Macular OCT Characteristics at 36 Weeks' Postmenstrual Age in Infants Examined for Retinopathy of Prematurity. Ophthalmol Retina. 2021 Jun;5(6):580-592. doi: 10.1016/j.oret.2020.09.004. Epub 2020 Sep 11.
Mangalesh S, Sarin N, McGeehan B, Prakalapakorn SG, Tran-Viet D, Cotten CM, Freedman SF, Maguire MG, Toth CA; BabySTEPS Group. Preterm Infant Stress During Handheld Optical Coherence Tomography vs Binocular Indirect Ophthalmoscopy Examination for Retinopathy of Prematurity. JAMA Ophthalmol. 2021 May 1;139(5):567-574. doi: 10.1001/jamaophthalmol.2021.0377.
Campbell JP, Kalpathy-Cramer J, Erdogmus D, Tian P, Kedarisetti D, Moleta C, Reynolds JD, Hutcheson K, Shapiro MJ, Repka MX, Ferrone P, Drenser K, Horowitz J, Sonmez K, Swan R, Ostmo S, Jonas KE, Chan RV, Chiang MF; Imaging and Informatics in Retinopathy of Prematurity Research Consortium. Plus Disease in Retinopathy of Prematurity: A Continuous Spectrum of Vascular Abnormality as a Basis of Diagnostic Variability. Ophthalmology. 2016 Nov;123(11):2338-2344. doi: 10.1016/j.ophtha.2016.07.026. Epub 2016 Aug 31.
Maldonado RS, Toth CA. Optical coherence tomography in retinopathy of prematurity: looking beyond the vessels. Clin Perinatol. 2013 Jun;40(2):271-96. doi: 10.1016/j.clp.2013.02.007.
Zepeda EM, Shariff A, Gillette TB, Grant L, Ding L, Tarczy-Hornoch K, Cabrera MT. Vitreous Bands Identified by Handheld Spectral-Domain Optical Coherence Tomography Among Premature Infants. JAMA Ophthalmol. 2018 Jul 1;136(7):753-758. doi: 10.1001/jamaophthalmol.2018.1509.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
Pro00107978
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.