MaST: MEG and Brain Stimulation in Tinnitus

NCT ID: NCT04978142

Last Updated: 2022-09-08

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

NA

Total Enrollment

40 participants

Study Classification

INTERVENTIONAL

Study Start Date

2020-12-07

Study Completion Date

2022-05-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Tinnitus is the awareness of a sound in the ear or head without any outside source. It affects around 15% of people in the UK. About 20% of people with tinnitus experience symptoms that negatively affect their quality of life including sleep disturbances, difficulties with hearing and concentration, social isolation, anxiety, depression, irritation or stress. Most common clinical management strategies for tinnitus include education and advice combined with some form of sound therapy. The effects of these management options are, however, variable. Currently, the exact aetiology of tinnitus is unknown although maladaptive plasticity due to sensorineural hearing loss is thought to play a big role. Neuroimaging studies have pointed to over-activation or excessive spontaneous activity within the central auditory cortex. Furthermore, electrophysiological techniques have confirmed the frontal cortex's role in tinnitus through dysfunctional top-down modulation.

Transcranial direct current stimulation (tDCS) is a neurostimulation technique in which weak currents (1-2 mA's) are delivered to the brain, thereby depolarising or hyperpolarising neurons within the desired region of cortex. tDCS is a non-invasive and easy to apply tool, delivered by applying two surface electrode to a patients head. It has previously been used as a treatment for depression, stroke rehabilitation, and cognitive enhancement.

Some studies have indicated potential benefit of tDCS in tinnitus patients, but this has not yet been investigated within the UK. Neuromodulation therapies should deliver a permanent reduction in tinnitus percept by driving the neuroplastic changes necessary to interrupt abnormal levels of oscillatory cortical activity and restore typical levels of activity. This change in activity should alter or interrupt the tinnitus percept (reduce or extinguish) and this should be concomitant with a change in the level of self-reported tinnitus handicap. The currently ongoing Cochrane review of neuromodulation (desynchronisation) for tinnitus in adults found mixed evidence for the electrical stimulation therapies for tinnitus, including tDCS. However, the review also found that the most recent tDCS trials that have used greater numbers of treatment sessions found significant reductions in tinnitus symptom severity, anxiety, and depression. Authors concluded that these findings warrant further trials of tDCS. Research studies using electroencephalography (EEG) or magnetoencephalography (MEG) suggested changes in oscillatory activity in different frequency bands that might be associated with tinnitus, however a consistent picture has not yet emerged. Reduction of this abnormal activity might signify a reduction in the level or perceived severity of TI and could potentially be used as a valuable indicator of the course of TI treatment.

In this project specific changes in brain activity that happen during a new treatment approach for tinnitus - transcranial Direct Current Stimulation (tDCS)- will be investigated. This will help to determine how the treatment might work, whether specific brain activity may be a meaningful biological indicator or objective measure of tinnitus, and provide a reliable measure of treatment-related change; this has not yet been achieved in tinnitus research but is crucial.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Data collection session will involve the participant completing the Tinnitus Functional Index (TFI) and Demographics and Tinnitus History Questionnaire (D\&THQ), which will provide the investigators with information about their personal tinnitus history including subjective characteristics such as loudness. The D\&THQ consists of questions selected from the European School for Interdisciplinary Tinnitus Research Screening Questionnaire (ESIT-SQ). Participants will undergo a standard hearing test, which will inform the investigators of any hearing loss. The participant's head shape will be digitized to aid in the spatial localization of the MEG signal. The participant will then undergo 40 minutes of MEG scanning (10 minutes of resting state without tDCS, 20 minutes of resting state MEG with either active or sham tDCS, and then another 10 minutes of resting state MEG without tDCS. The first 10 minutes will serve as a baseline of resting state oscillatory brain activity. The concurrent tDCS and MEG recording will allow the investigators to observe changes in oscillatory brain activity during tDCS. The last 10 minutes of MEG recording will allow the investigators to see whether any changes in oscillatory activity persist after the stimulation ends. After the MEG recording has finished, the participant will undergo an anatomical MRI scan. This will allow the investigators to take the participants' individual brain morphology into account when analysing the source of the MEG signal.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Tinnitus

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Primary Study Purpose

OTHER

Blinding Strategy

SINGLE

Participants

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Active

Active tDCS stimulation at 2 mA for 20 minutes, with a 10 seconds of ramp-up and 10 seconds of ramp-down time as used in previous tinnitus studies. The stimulation will be delivered via two rubber electrodes attached using a layer of conductive paste (35 cm2). The anode will be placed over the right dlPFC and cathode over the left dlPFC).

Group Type EXPERIMENTAL

transcranial Direct Current Stimulation (tDCS)

Intervention Type DEVICE

Non-invasive neuromodulation employing a direct current, applied using a DC STIMULATOR PLUS manufactured by NeuroConn Technology by NeuroCare. This is a micro-processor-controlled constant current source. It meets the highest safety standards thanks to (hardware- and software-based) multistage monitoring of the current path. By continuously monitoring electrode impedance it can detect insufficient contact with the skin and automatically terminate stimulation. This is a reliable method of avoiding any injury to the patient.

Sham

Placebo stimulation is performed using the same current intensity, but only applied for 45 seconds in addition to the 10 second ramp-up and 10 second ramp-down periods. The electrode configuration and placement will be identical to the active stimulation.

Group Type SHAM_COMPARATOR

transcranial Direct Current Stimulation (tDCS)

Intervention Type DEVICE

Non-invasive neuromodulation employing a direct current, applied using a DC STIMULATOR PLUS manufactured by NeuroConn Technology by NeuroCare. This is a micro-processor-controlled constant current source. It meets the highest safety standards thanks to (hardware- and software-based) multistage monitoring of the current path. By continuously monitoring electrode impedance it can detect insufficient contact with the skin and automatically terminate stimulation. This is a reliable method of avoiding any injury to the patient.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

transcranial Direct Current Stimulation (tDCS)

Non-invasive neuromodulation employing a direct current, applied using a DC STIMULATOR PLUS manufactured by NeuroConn Technology by NeuroCare. This is a micro-processor-controlled constant current source. It meets the highest safety standards thanks to (hardware- and software-based) multistage monitoring of the current path. By continuously monitoring electrode impedance it can detect insufficient contact with the skin and automatically terminate stimulation. This is a reliable method of avoiding any injury to the patient.

Intervention Type DEVICE

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

1. Aged 18 years or over
2. Have subjective tinnitus
3. Able to read and understand English
4. Safe to undergo tDCS (according to tDCS Safety Questionnaire)
5. Safe to undergo MRI scanning (according to MRI Safety Screening Questionnaire)

Exclusion Criteria

1. Aged under 18 years
2. No tinnitus
3. Not able to read and understand English
4. Not safe to undergo tDCS (according to tDCS Safety Questionnaire)
5. Not safe to undergo MRI scanning (according to MRI Safety Screening Questionnaire)
Minimum Eligible Age

18 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

University of Nottingham

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Magdalena Sereda

Senior Research Fellow

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Magdalena N Sereda, PhD

Role: PRINCIPAL_INVESTIGATOR

NIHR Nottingham BRC / University of Nottingham

Bas Labree, MSc

Role: STUDY_DIRECTOR

NIHR Nottingham BRC / University of Nottingham

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

University of Nottingham, NIHR Nottingham Biomedical Research Centre

Nottingham, Nottinghamshire, United Kingdom

Site Status

Countries

Review the countries where the study has at least one active or historical site.

United Kingdom

References

Explore related publications, articles, or registry entries linked to this study.

Adjamian P, Sereda M, Hall DA. The mechanisms of tinnitus: perspectives from human functional neuroimaging. Hear Res. 2009 Jul;253(1-2):15-31. doi: 10.1016/j.heares.2009.04.001. Epub 2009 Apr 11.

Reference Type BACKGROUND
PMID: 19364527 (View on PubMed)

Adjamian P, Sereda M, Zobay O, Hall DA, Palmer AR. Neuromagnetic indicators of tinnitus and tinnitus masking in patients with and without hearing loss. J Assoc Res Otolaryngol. 2012 Oct;13(5):715-31. doi: 10.1007/s10162-012-0340-5. Epub 2012 Jul 12.

Reference Type BACKGROUND
PMID: 22791191 (View on PubMed)

Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000 Sep 15;527 Pt 3(Pt 3):633-9. doi: 10.1111/j.1469-7793.2000.t01-1-00633.x.

Reference Type BACKGROUND
PMID: 10990547 (View on PubMed)

Genitsaridi E, Partyka M, Gallus S, Lopez-Escamez JA, Schecklmann M, Mielczarek M, Trpchevska N, Santacruz JL, Schoisswohl S, Riha C, Lourenco M, Biswas R, Liyanage N, Cederroth CR, Perez-Carpena P, Devos J, Fuller T, Edvall NK, Hellberg MP, D'Antonio A, Gerevini S, Sereda M, Rein A, Kypraios T, Hoare DJ, Londero A, Pryss R, Schlee W, Hall DA. Standardised profiling for tinnitus research: The European School for Interdisciplinary Tinnitus Research Screening Questionnaire (ESIT-SQ). Hear Res. 2019 Jun;377:353-359. doi: 10.1016/j.heares.2019.02.017. Epub 2019 Mar 2.

Reference Type BACKGROUND
PMID: 30871820 (View on PubMed)

Faber M, Vanneste S, Fregni F, De Ridder D. Top down prefrontal affective modulation of tinnitus with multiple sessions of tDCS of dorsolateral prefrontal cortex. Brain Stimul. 2012 Oct;5(4):492-8. doi: 10.1016/j.brs.2011.09.003. Epub 2011 Oct 5.

Reference Type BACKGROUND
PMID: 22019079 (View on PubMed)

Yadollahpour A, Mayo M, Saki N, Rashidi S, Bayat A. A chronic protocol of bilateral transcranial direct current stimulation over auditory cortex for tinnitus treatment: Dataset from a double-blinded randomized controlled trial. F1000Res. 2018 Jun 12;7:733. doi: 10.12688/f1000research.14971.1. eCollection 2018.

Reference Type BACKGROUND
PMID: 30356442 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

505-2003

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Tinnitus rTMS 2013
NCT01929837 COMPLETED NA