Mobile 3D C-arm CT for Lung Tumor Localization Efficacy Analysis: a Prospective Clinical Trial
NCT ID: NCT04974632
Last Updated: 2025-02-26
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
41 participants
INTERVENTIONAL
2021-07-01
2022-06-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
In order to improve nodule localization, a variety of preoperative localization methods such as CT-guide hook wire or methyl blue dye localization have been proposed. It has been proved to be much easier to mark lung nodules and help guide resection during VATS. However, there are certain concerns. First, it is difficult to minimize the time between the localization procedure and the subsequent surgery in reality. Second, there is concern for patient safety, in particular pneumothorax or hemothorax, during transferred to and from the ward to the radiology suit and in the frequent delays and waiting in reception areas prior to transfer to operating theaters. Finally, interdepartmental transfers and delays can also increase the risk of hook wire dislodgement.
Theoretically, the aforementioned disadvantage could be solved by performing the localization procedure and the lung surgery in the same operating room environment. We performed single-step localization and removal of small pulmonary nodules in the hybrid OR equipped with floor-mounted C-arm cone-beam computed tomography (CBCT) in the previous study. However, it costed a lot of money and every localization could only be performed in the hybrid OR. Mobile 3D C-arm CT is another form of CBCT. It depicts soft tissues with high contrast but also offer a more affordable solution with relative low cost. In this case series, we will investigate the use of a mobile 3D C-arm CT for single-step localization and removal of small pulmonary nodules.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Comparison of Preoperative CT Scan Guided and Intraoperative Hybrid DynaCT Scan-Guided Small Lung Tumor Localization
NCT03395964
Partial Pressure of Oxygen Control Method in Identification of Intersegmental Plane
NCT06644066
Localization for Deep Lung Nodules: Microcoil Versus Contrast Injection
NCT03617029
The Accuracy of Targeted Lymph Node Dissection of Non-small Cell Lung Cancer Patients According to Predictive Models
NCT06768853
Augmented Reality-assisted Localization of Solitary Pulmonary Nodules for Precise Sublobar Lung Resection
NCT05162235
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
localization
small, deep or ground-glass opacity (GGO) lung tumor, Mobile 3D C-arm CT assisted pre-operative localization, video-assisted thoracic surgery(VATS)
localization
small, deep or ground-glass opacity (GGO) lung tumor, Mobile 3D C-arm CT assisted pre-operative localization, video-assisted thoracic surgery(VATS)
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
localization
small, deep or ground-glass opacity (GGO) lung tumor, Mobile 3D C-arm CT assisted pre-operative localization, video-assisted thoracic surgery(VATS)
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
20 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Chang Gung Memorial Hospital
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Yin-Kai Chao, MD, Ph D
Role: STUDY_CHAIR
Chang Gung Memorial Hospital
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Chang Gung Memorial Hospital
Taoyuan District, , Taiwan
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Wang BY, Huang JY, Cheng CY, Lin CH, Ko J, Liaw YP. Lung cancer and prognosis in taiwan: a population-based cancer registry. J Thorac Oncol. 2013 Sep;8(9):1128-35. doi: 10.1097/JTO.0b013e31829ceba4.
Huang HL, Kung PT, Chiu CF, Wang YH, Tsai WC. Factors associated with lung cancer patients refusing treatment and their survival: a national cohort study under a universal health insurance in Taiwan. PLoS One. 2014 Jul 7;9(7):e101731. doi: 10.1371/journal.pone.0101731. eCollection 2014.
Bach PB, Mirkin JN, Oliver TK, Azzoli CG, Berry DA, Brawley OW, Byers T, Colditz GA, Gould MK, Jett JR, Sabichi AL, Smith-Bindman R, Wood DE, Qaseem A, Detterbeck FC. Benefits and harms of CT screening for lung cancer: a systematic review. JAMA. 2012 Jun 13;307(22):2418-29. doi: 10.1001/jama.2012.5521.
National Lung Screening Trial Research Team; Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM, Gareen IF, Gatsonis C, Marcus PM, Sicks JD. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011 Aug 4;365(5):395-409. doi: 10.1056/NEJMoa1102873. Epub 2011 Jun 29.
Oken MM, Hocking WG, Kvale PA, Andriole GL, Buys SS, Church TR, Crawford ED, Fouad MN, Isaacs C, Reding DJ, Weissfeld JL, Yokochi LA, O'Brien B, Ragard LR, Rathmell JM, Riley TL, Wright P, Caparaso N, Hu P, Izmirlian G, Pinsky PF, Prorok PC, Kramer BS, Miller AB, Gohagan JK, Berg CD; PLCO Project Team. Screening by chest radiograph and lung cancer mortality: the Prostate, Lung, Colorectal, and Ovarian (PLCO) randomized trial. JAMA. 2011 Nov 2;306(17):1865-73. doi: 10.1001/jama.2011.1591. Epub 2011 Oct 26.
Humphrey LL, Deffebach M, Pappas M, Baumann C, Artis K, Mitchell JP, Zakher B, Fu R, Slatore CG. Screening for lung cancer with low-dose computed tomography: a systematic review to update the US Preventive services task force recommendation. Ann Intern Med. 2013 Sep 17;159(6):411-420. doi: 10.7326/0003-4819-159-6-201309170-00690.
US Preventive Services Task Force; Krist AH, Davidson KW, Mangione CM, Barry MJ, Cabana M, Caughey AB, Davis EM, Donahue KE, Doubeni CA, Kubik M, Landefeld CS, Li L, Ogedegbe G, Owens DK, Pbert L, Silverstein M, Stevermer J, Tseng CW, Wong JB. Screening for Lung Cancer: US Preventive Services Task Force Recommendation Statement. JAMA. 2021 Mar 9;325(10):962-970. doi: 10.1001/jama.2021.1117.
Suzuki K, Nagai K, Yoshida J, Ohmatsu H, Takahashi K, Nishimura M, Nishiwaki Y. Video-assisted thoracoscopic surgery for small indeterminate pulmonary nodules: indications for preoperative marking. Chest. 1999 Feb;115(2):563-8. doi: 10.1378/chest.115.2.563.
Santambrogio R, Montorsi M, Bianchi P, Mantovani A, Ghelma F, Mezzetti M. Intraoperative ultrasound during thoracoscopic procedures for solitary pulmonary nodules. Ann Thorac Surg. 1999 Jul;68(1):218-22. doi: 10.1016/s0003-4975(99)00459-2.
Kim YD, Jeong YJ, I H, Cho JS, Lee JW, Kim HJ, Lee SH, Kim DH. Localization of pulmonary nodules with lipiodol prior to thoracoscopic surgery. Acta Radiol. 2011 Feb 1;52(1):64-9. doi: 10.1258/ar.2010.100307.
Mayo JR, Clifton JC, Powell TI, English JC, Evans KG, Yee J, McWilliams AM, Lam SC, Finley RJ. Lung nodules: CT-guided placement of microcoils to direct video-assisted thoracoscopic surgical resection. Radiology. 2009 Feb;250(2):576-85. doi: 10.1148/radiol.2502080442.
Finley RJ, Mayo JR, Grant K, Clifton JC, English J, Leo J, Lam S. Preoperative computed tomography-guided microcoil localization of small peripheral pulmonary nodules: a prospective randomized controlled trial. J Thorac Cardiovasc Surg. 2015 Jan;149(1):26-31. doi: 10.1016/j.jtcvs.2014.08.055. Epub 2014 Sep 16.
Cheng C, Fang HY, Wen CT, Chao YK. Real-time image-guided electromagnetic navigation bronchoscopy dual-marker technique to localize deep pulmonary nodules in a hybrid operating room. Eur J Cardiothorac Surg. 2020 Aug 1;58(Suppl_1):i103-i105. doi: 10.1093/ejcts/ezz360.
Sadoughi A, Virdi S. Mobile 3D Intraprocedural Fluoroscopy in Combination With Ultrathin Bronchoscopy for Biopsy of Peripheral Lung Nodules. J Bronchology Interv Pulmonol. 2021 Jan 1;28(1):76-80. doi: 10.1097/LBR.0000000000000711.
Kpodonu J, Raney A. The cardiovascular hybrid room a key component for hybrid interventions and image guided surgery in the emerging specialty of cardiovascular hybrid surgery. Interact Cardiovasc Thorac Surg. 2009 Oct;9(4):688-92. doi: 10.1510/icvts.2009.209429. Epub 2009 Jul 21.
Biasi L, Ali T, Ratnam LA, Morgan R, Loftus I, Thompson M. Intra-operative DynaCT improves technical success of endovascular repair of abdominal aortic aneurysms. J Vasc Surg. 2009 Feb;49(2):288-95. doi: 10.1016/j.jvs.2008.09.013. Epub 2008 Nov 28.
Heran NS, Song JK, Namba K, Smith W, Niimi Y, Berenstein A. The utility of DynaCT in neuroendovascular procedures. AJNR Am J Neuroradiol. 2006 Feb;27(2):330-2.
Irie K, Murayama Y, Saguchi T, Ishibashi T, Ebara M, Takao H, Abe T. Dynact soft-tissue visualization using an angiographic C-arm system: initial clinical experience in the operating room. Neurosurgery. 2008 Mar;62(3 Suppl 1):266-72; discussion 272. doi: 10.1227/01.neu.0000317403.23713.92.
Fang HY, Chao YK, Hsieh MJ, Wen CT, Ho PH, Tang WJ, Liu YH. Image-guided video-assisted thoracoscopic surgery for small ground glass opacities: a case series. J Vis Surg. 2017 Oct 18;3:142. doi: 10.21037/jovs.2017.09.08. eCollection 2017.
Hsieh MJ, Wen CT, Fang HY, Wen YW, Lin CC, Chao YK. Learning curve of image-guided video-assisted thoracoscopic surgery for small pulmonary nodules: A prospective analysis of 30 initial patients. J Thorac Cardiovasc Surg. 2018 Apr;155(4):1825-1832.e1. doi: 10.1016/j.jtcvs.2017.11.079. Epub 2017 Dec 13.
Chao YK, Wen CT, Fang HY, Hsieh MJ. A single-center experience of 100 image-guided video-assisted thoracoscopic surgery procedures. J Thorac Dis. 2018 Jun;10(Suppl 14):S1624-S1630. doi: 10.21037/jtd.2018.04.44.
Chao YK, Pan KT, Wen CT, Fang HY, Hsieh MJ. A comparison of efficacy and safety of preoperative versus intraoperative computed tomography-guided thoracoscopic lung resection. J Thorac Cardiovasc Surg. 2018 Nov;156(5):1974-1983.e1. doi: 10.1016/j.jtcvs.2018.06.088. Epub 2018 Jul 20.
Fang HY, Chang KW, Chao YK. Hybrid operating room for the intraoperative CT-guided localization of pulmonary nodules. Ann Transl Med. 2019 Jan;7(2):34. doi: 10.21037/atm.2018.12.48.
Gill RR, Zheng Y, Barlow JS, Jayender J, Girard EE, Hartigan PM, Chirieac LR, Belle-King CJ, Murray K, Sears C, Wee JO, Jaklitsch MT, Colson YL, Bueno R. Image-guided video assisted thoracoscopic surgery (iVATS) - phase I-II clinical trial. J Surg Oncol. 2015 Jul;112(1):18-25. doi: 10.1002/jso.23941. Epub 2015 May 28.
Ng CSH, Man Chu C, Kwok MWT, Yim APC, Wong RHL. Hybrid DynaCT scan-guided localization single-port lobectomy. [corrected]. Chest. 2015 Mar;147(3):e76-e78. doi: 10.1378/chest.14-1503.
Rouze S, de Latour B, Flecher E, Guihaire J, Castro M, Corre R, Haigron P, Verhoye JP. Small pulmonary nodule localization with cone beam computed tomography during video-assisted thoracic surgery: a feasibility study. Interact Cardiovasc Thorac Surg. 2016 Jun;22(6):705-11. doi: 10.1093/icvts/ivw029. Epub 2016 Feb 26.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
202100442A3
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.