Effect of SARS-CoV-2 Disease on Immune Responses, Disease Severity and Treatment Outcomes in Pulmonary Tuberculosis
NCT ID: NCT04930978
Last Updated: 2023-11-22
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
250 participants
OBSERVATIONAL
2021-06-21
2024-06-20
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
The main objective of the study would be to evaluate the baseline differences in immune cells populations immune cell responses at baseline and at the time of treatment (2nd month) and end of treatment. Further, Investigators would be evaluating the changes in proteomic profiles in a subset of these individuals. In addition, immunological assays examining differences in T cell populations, measuring levels of various cytokines and by immunophenotyping as well as other immune parameters related to innate and adaptive responses will be performed to enhance the understanding of the immunological cross-talk between active TB patients with or without SARS-CoV-2. The secondary objective would be to study the clinical features, disease severity, mycobacterial burden and treatment outcomes in a cohort of SARS-CoV-2 infected (asymptomatic PCR or Antibody+) and non-infected patients with active pulmonary TB.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Tuberculosis (TB) is one of the most important infectious diseases around the world. Tuberculosis (TB), although largely a curable disease, still remains a major cause of morbidity and mortality worldwide. According to the Global Tuberculosis Report 2019, there are an estimated 10 million incident cases of tuberculosis and killed 1.2 million in 2018 globally. India accounts for 27% of all estimated incident cases worldwide. M. tuberculosis (M.tb) infection could result in the activation of innate (monocytes, macrophages, dendritic cells, neutrophils, mast cells) and adaptive (CD4+ and CD8+ T cells, cytotoxic markers) immune response which are necessary for protection. Protective immunity against M. tuberculosis is not completely understood but depends on a wide range of innate and adaptive immune mechanisms. T cell-mediated immune responses are important in the host control of M. tuberculosis infection. The ability of CD4+ T cells to produce gamma interferon, which activates phagocytes to contain the intracellular pathogen, is central in protection. Indeed, T helper 1 (Th1) cells and the gamma IFN that they produce are crucial for protection against disease. This is evident from the increased risk of tuberculosis in individuals with deficiencies in their IFNγ and interleukin 12 (IL 12; which promotes Th1 cell differentiation) signalling pathways. Many other CD4+ T cell subsets, in addition to gamma IFN producing Th1 cells, may also have a role; for example, IL 17-producing CD4+ T cells were shown to mediate the recruitment of protective Th1 cells to the lung upon M. tuberculosis challenge. Furthermore, increased frequencies of regulatory CD4+ T regulatory (Treg) cells during active disease may ensure that the Th1 cell response is not excessive, and this would help minimize lung damage in tuberculosis. The CD8+ T cell response to M. tuberculosis is normally of a lower magnitude than the CD4+ T cell response; however, CD8+ T cells may modulate phago¬cyte activity or produce molecules such as granulysin that may be directly cytotoxic to the mycobacteria. Similarly, other cytokines, in addition to gamma IFN, may also be crucial; for example, Tumour necrosis factor-alpha is important for establishing the granuloma, which is a well-organized collection of innate and adaptive cells that forms to contain the pathogen. Development of TB disease results from interactions among the environment, the host, and the pathogen, and known risk factors include HIV coinfection, immunodeficiency, diabetes mellitus, overcrowding, malnutrition, and general poverty.
The link between TB and COVID-19 is likely to be bi-directional. The temporary immunosuppression induced by tuberculosis may increase the susceptibility of patients to COVID-19, and COVID may, in turn, also increase susceptibility to TB. In 2025, an additional 1.4 million TB deaths could be occurred as direct consequence of the COVID-19 pandemic. The COVID-19 disease rate was high in patients with active TB. TB and SARS-CoV-2 are both infectious diseases which primarily attack the alveolar region of the lungs and share common symptom patterns. Both CD4 and CD8 counts were severely reduced, and the surviving T cells appeared to demonstrate "functional exhaustion". This T cell depletion and dysfunction may exacerbate active TB. Published studies have reported that patients with TB and other viral infections impede the host immune responses like induction of type I interferons by influenza infection, lower mean of CD4+ and CD8+ T cells and increased viral elimination in sputum, stool and suppression of cellular immunity. Recent studies have reported that cytokines seem to play an important role in COVID-19 and TB, and their plasma levels associated with disease severity. It is predicted that people with coinfection have impaired protective immune responses and treatment outcomes, specifically in terms of anti-tuberculosis treatment. Studies showed that SARS-CoV2 coexistent with TB resulted in a decreased absolute number of CD4+ and CD8+ T cells and reduced antibody levels following SARS-CoV-2 recovery. SARS-CoV-2 with TB patients exhibited prolonged viral elimination from stools and sputum in comparison without TB. Studies have demonstrated that SARS-CoV-2 disease stimulates increased cytokine secretion, like interleukin-1 , gamma interferon, tumour necrosis factor- alpha, interleukin-2 (IL-2), interleukin-4 (IL-4), interleukin-10 (IL-10), that ultimately leads to severe inflammation and their plasma levels were linked with disease severity. However, only limited information is available on the function of antigen-specific T cell-mediated immune response to COVID-19 specifically upon coinfection with tuberculosis, since both the disease primarily affects the lungs.
Limited studies have shown that influenza induces immune system hyperactivity and exacerbates pulmonary tuberculosis, leading to worsening of pulmonary function. Respiratory viral infections coexistent with TB delay the host immune responses and lead to more serious clinical outcomes. Coinfection most probably exacerbates inflammation through heightened secretion of cytokines and accelerates the development of severe acute respiratory syndrome and also worsen the TB disease and its outcome. Hence, Investigators propose that understanding mechanisms of immune regulation during SARS-CoV-2 disease may lead to the development of better therapeutic strategies and the results of our fundamental studies may inform future plans for clinical interventional studies. The main fundamental research component of this study might identify clinical parameters and treatment methods and to understand the immunological mechanism for the severity in coinfected SARS-CoV-2 and TB patients.
Hypothesis: Investigators hypothesize that altered immunity due to present or prior asymptomatic disease with SARS-CoV-2 virus could lead to altered immune responses and systems biology, increased severity and altered treatment outcomes in TB disease.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
CASE_CONTROL
PROSPECTIVE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
TB patients with SARS-CoV-2 PCR+
50 TB patients with SARS-CoV-2 PCR+ will be recruited in group 1
No interventions assigned to this group
TB patients with SARS-CoV-2 Ab+
100 TB patients with SARS-CoV-2 Ab+ will be recruited in group 2
No interventions assigned to this group
TB patients negative for SARS-CoV-2 PCR and Ab
100 TB patients with SARS-CoV-2 PCR and Ab negative will be recruited in group 3
No interventions assigned to this group
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Newly diagnosed smear or GeneXpert positive for TB with or without SARS-CoV-2 (present or prior asymptomatic) disease;
* Willing to provide written informed consent.
Exclusion Criteria
* Treatment for current TB episode \>1 week before enrollment;
* Drug resistance TB patients;
* Pregnancy or childbirth within last 6 months;
* Diabetes, HIV-seropositive and current use of immunosuppressive and steroid therapy Mild, Moderate and severe Covid-19 disease.
18 Years
65 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Tuberculosis Research Centre, India
OTHER_GOV
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Dr. S. Subash Babu
Scientific Director
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Anuradha Rajamanickam, PhD
Role: PRINCIPAL_INVESTIGATOR
National Institute for Research in Tuberculosis-International Centers for Excellence in Research
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
National Institute for Research in Tuberculosis
Chennai, Tamil Nadu, India
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
2020 041
Identifier Type: -
Identifier Source: org_study_id