Modulation of Gut Microbiota to Enhance Health and Immunity
NCT ID: NCT04884776
Last Updated: 2022-12-29
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
NA
453 participants
INTERVENTIONAL
2021-06-01
2024-05-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
AIM We aim to evaluate the efficacy of modulating gut microbiota with a microbiome immunity formula in vulnerable subjects (patients with underlying type 2 DM and elderlies) in improving immune functions, reducing adverse events associated with COVID-19 vaccinations and reducing hospitalisation in susceptible individuals during the COVID-19 pandemic.
STUDY DESIGN This is a double-blinded, randomized, active-placebo controlled study comparing a microbiome immunity formula and placebo in enhancing immunity and reducing hospitalisation within one year. Except two kinds of subjects (Substudy 1: Patients with Type 2 DM and Substudy 2: Elderly individual) will be included in respective substudy, all other methodologies are the same. In each substudy, at least half of the recruited subjects will plan to receive COVID-19 vaccination and start to take the study products after vaccination. Recruited subjects will be randomised to receive a microbiome immunity formula or active placebo for 3 months, with another 9 months follow-up after completion of study products.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
PREVENTION
DOUBLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Active arm
Subject will be instructed to take microbiome immunity formula 2 sachets daily for a total of 12 weeks.
Microbiome immunity formula
Microbiome immunity formula contains probiotics blend (3 Bifidobacteria, 10 billion CFU per sachet)
Placebo arm
Subject will be instructed to take active placebo daily for a total of 12 weeks.
Active placebo
Active placebo contains active vitamin
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Microbiome immunity formula
Microbiome immunity formula contains probiotics blend (3 Bifidobacteria, 10 billion CFU per sachet)
Active placebo
Active placebo contains active vitamin
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
2. A confirmed diagnosis of type 2 DM for ≥ 3 months with stable control (i.e. no change in DM medications in recent 2 months)
3. Written informed consents obtained
1. Age 65 years and above
2. Written informed consents obtained
Exclusion Criteria
2. Known active sepsis or active malignancy
3. Known increased infection risk due to underlying immunosuppressed state which includes:
* Prior organ or hematopoietic stem cell transplant
* Neutropenia with absolute neutrophil count (ANC) \<500 cells/ul at the time of study inclusion
* Known HIV infection with CD4 \<200 cells/ul at the time of study inclusion
* On concomitant immunosuppressants or corticosteroid at a dose of prednisolone equivalent dose 10mg or more for more than 3 months
4. Known history or active infective endocarditis
5. On peritoneal dialysis or haemodialysis
6. Documented pregnancy
Substudy 2
1. Known history of confirmed COVID-19 infection
2. Known active sepsis or active malignancy
3. Known increased infection risk due to underlying immunosuppressed state which includes:
* Prior organ or hematopoietic stem cell transplant
* Neutropenia with absolute neutrophil count (ANC) \<500 cells/ul at the time of study inclusion
* Known HIV infection with CD4 \<200 cells/ul at the time of study inclusion
* On concomitant immunosuppressants, chemotherapies or corticosteroid at a dose of prednisolone equivalent dose 10mg or more for more than 3 months
4. Known history or active infective endocarditis
5. On peritoneal dialysis or haemodialysis
6. Known active malignancy
7. Known terminal illness with life expectancy less than 3 months
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Chinese University of Hong Kong
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Mak Wing Yan
Assistant Professor
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Joyce WY Mak, FHKAM
Role: PRINCIPAL_INVESTIGATOR
Chinese University of Hong Kong
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Prince of Wales Hospital, Shatin
Hong Kong, , Hong Kong
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020 Mar 28;395(10229):1054-1062. doi: 10.1016/S0140-6736(20)30566-3. Epub 2020 Mar 11.
McGurnaghan SJ, Weir A, Bishop J, Kennedy S, Blackbourn LAK, McAllister DA, Hutchinson S, Caparrotta TM, Mellor J, Jeyam A, O'Reilly JE, Wild SH, Hatam S, Hohn A, Colombo M, Robertson C, Lone N, Murray J, Butterly E, Petrie J, Kennon B, McCrimmon R, Lindsay R, Pearson E, Sattar N, McKnight J, Philip S, Collier A, McMenamin J, Smith-Palmer A, Goldberg D, McKeigue PM, Colhoun HM; Public Health Scotland COVID-19 Health Protection Study Group; Scottish Diabetes Research Network Epidemiology Group. Risks of and risk factors for COVID-19 disease in people with diabetes: a cohort study of the total population of Scotland. Lancet Diabetes Endocrinol. 2021 Feb;9(2):82-93. doi: 10.1016/S2213-8587(20)30405-8. Epub 2020 Dec 23.
Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW; the Northwell COVID-19 Research Consortium; Barnaby DP, Becker LB, Chelico JD, Cohen SL, Cookingham J, Coppa K, Diefenbach MA, Dominello AJ, Duer-Hefele J, Falzon L, Gitlin J, Hajizadeh N, Harvin TG, Hirschwerk DA, Kim EJ, Kozel ZM, Marrast LM, Mogavero JN, Osorio GA, Qiu M, Zanos TP. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA. 2020 May 26;323(20):2052-2059. doi: 10.1001/jama.2020.6775.
Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, Cereda D, Coluccello A, Foti G, Fumagalli R, Iotti G, Latronico N, Lorini L, Merler S, Natalini G, Piatti A, Ranieri MV, Scandroglio AM, Storti E, Cecconi M, Pesenti A; COVID-19 Lombardy ICU Network. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020 Apr 28;323(16):1574-1581. doi: 10.1001/jama.2020.5394.
Apicella M, Campopiano MC, Mantuano M, Mazoni L, Coppelli A, Del Prato S. COVID-19 in people with diabetes: understanding the reasons for worse outcomes. Lancet Diabetes Endocrinol. 2020 Sep;8(9):782-792. doi: 10.1016/S2213-8587(20)30238-2. Epub 2020 Jul 17.
Quan J, Li TK, Pang H, Choi CH, Siu SC, Tang SY, Wat NMS, Woo J, Johnston JM, Leung GM. Diabetes incidence and prevalence in Hong Kong, China during 2006-2014. Diabet Med. 2017 Jul;34(7):902-908. doi: 10.1111/dme.13284. Epub 2016 Nov 29.
Mueller AL, McNamara MS, Sinclair DA. Why does COVID-19 disproportionately affect older people? Aging (Albany NY). 2020 May 29;12(10):9959-9981. doi: 10.18632/aging.103344. Epub 2020 May 29.
Marquez EJ, Chung CH, Marches R, Rossi RJ, Nehar-Belaid D, Eroglu A, Mellert DJ, Kuchel GA, Banchereau J, Ucar D. Sexual-dimorphism in human immune system aging. Nat Commun. 2020 Feb 6;11(1):751. doi: 10.1038/s41467-020-14396-9.
Jaillon S, Berthenet K, Garlanda C. Sexual Dimorphism in Innate Immunity. Clin Rev Allergy Immunol. 2019 Jun;56(3):308-321. doi: 10.1007/s12016-017-8648-x.
Yeoh YK, Zuo T, Lui GC, Zhang F, Liu Q, Li AY, Chung AC, Cheung CP, Tso EY, Fung KS, Chan V, Ling L, Joynt G, Hui DS, Chow KM, Ng SSS, Li TC, Ng RW, Yip TC, Wong GL, Chan FK, Wong CK, Chan PK, Ng SC. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut. 2021 Apr;70(4):698-706. doi: 10.1136/gutjnl-2020-323020. Epub 2021 Jan 11.
Segal JP, Mak JWY, Mullish BH, Alexander JL, Ng SC, Marchesi JR. The gut microbiome: an under-recognised contributor to the COVID-19 pandemic? Therap Adv Gastroenterol. 2020 Nov 24;13:1756284820974914. doi: 10.1177/1756284820974914. eCollection 2020.
Zhang X, Tan Y, Ling Y, Lu G, Liu F, Yi Z, Jia X, Wu M, Shi B, Xu S, Chen J, Wang W, Chen B, Jiang L, Yu S, Lu J, Wang J, Xu M, Yuan Z, Zhang Q, Zhang X, Zhao G, Wang S, Chen S, Lu H. Viral and host factors related to the clinical outcome of COVID-19. Nature. 2020 Jul;583(7816):437-440. doi: 10.1038/s41586-020-2355-0. Epub 2020 May 20.
Zuo T, Zhang F, Lui GCY, Yeoh YK, Li AYL, Zhan H, Wan Y, Chung ACK, Cheung CP, Chen N, Lai CKC, Chen Z, Tso EYK, Fung KSC, Chan V, Ling L, Joynt G, Hui DSC, Chan FKL, Chan PKS, Ng SC. Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology. 2020 Sep;159(3):944-955.e8. doi: 10.1053/j.gastro.2020.05.048. Epub 2020 May 20.
Zuo T, Liu Q, Zhang F, Lui GC, Tso EY, Yeoh YK, Chen Z, Boon SS, Chan FK, Chan PK, Ng SC. Depicting SARS-CoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19. Gut. 2021 Feb;70(2):276-284. doi: 10.1136/gutjnl-2020-322294. Epub 2020 Jul 20.
Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014 Mar 27;157(1):121-41. doi: 10.1016/j.cell.2014.03.011.
Takiishi T, Fenero CIM, Camara NOS. Intestinal barrier and gut microbiota: Shaping our immune responses throughout life. Tissue Barriers. 2017 Oct 2;5(4):e1373208. doi: 10.1080/21688370.2017.1373208. Epub 2017 Sep 28.
Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E. Dysbiosis and the immune system. Nat Rev Immunol. 2017 Apr;17(4):219-232. doi: 10.1038/nri.2017.7. Epub 2017 Mar 6.
Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Li S, Yang H, Wang J, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K, Wang J. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012 Oct 4;490(7418):55-60. doi: 10.1038/nature11450. Epub 2012 Sep 26.
Stenman LK, Waget A, Garret C, Briand F, Burcelin R, Sulpice T, Lahtinen S. Probiotic B420 and prebiotic polydextrose improve efficacy of antidiabetic drugs in mice. Diabetol Metab Syndr. 2015 Sep 12;7:75. doi: 10.1186/s13098-015-0075-7. eCollection 2015.
Reimer RA, Grover GJ, Koetzner L, Gahler RJ, Lyon MR, Wood S. Combining sitagliptin/metformin with a functional fiber delays diabetes progression in Zucker rats. J Endocrinol. 2014 Feb 10;220(3):361-73. doi: 10.1530/JOE-13-0484. Print 2014 Mar.
Zheng J, Li H, Zhang X, Jiang M, Luo C, Lu Z, Xu Z, Shi J. Prebiotic Mannan-Oligosaccharides Augment the Hypoglycemic Effects of Metformin in Correlation with Modulating Gut Microbiota. J Agric Food Chem. 2018 Jun 13;66(23):5821-5831. doi: 10.1021/acs.jafc.8b00829. Epub 2018 Jun 5.
Landete JM, Gaya P, Rodriguez E, Langa S, Peiroten A, Medina M, Arques JL. Probiotic Bacteria for Healthier Aging: Immunomodulation and Metabolism of Phytoestrogens. Biomed Res Int. 2017;2017:5939818. doi: 10.1155/2017/5939818. Epub 2017 Oct 1.
Peterson CT, Sharma V, Elmen L, Peterson SN. Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota. Clin Exp Immunol. 2015 Mar;179(3):363-77. doi: 10.1111/cei.12474.
Yan F, Polk DB. Probiotics and immune health. Curr Opin Gastroenterol. 2011 Oct;27(6):496-501. doi: 10.1097/MOG.0b013e32834baa4d.
Maldonado Galdeano C, Cazorla SI, Lemme Dumit JM, Velez E, Perdigon G. Beneficial Effects of Probiotic Consumption on the Immune System. Ann Nutr Metab. 2019;74(2):115-124. doi: 10.1159/000496426. Epub 2019 Jan 23.
de Jong SE, Olin A, Pulendran B. The Impact of the Microbiome on Immunity to Vaccination in Humans. Cell Host Microbe. 2020 Aug 12;28(2):169-179. doi: 10.1016/j.chom.2020.06.014.
Hagan T, Cortese M, Rouphael N, Boudreau C, Linde C, Maddur MS, Das J, Wang H, Guthmiller J, Zheng NY, Huang M, Uphadhyay AA, Gardinassi L, Petitdemange C, McCullough MP, Johnson SJ, Gill K, Cervasi B, Zou J, Bretin A, Hahn M, Gewirtz AT, Bosinger SE, Wilson PC, Li S, Alter G, Khurana S, Golding H, Pulendran B. Antibiotics-Driven Gut Microbiome Perturbation Alters Immunity to Vaccines in Humans. Cell. 2019 Sep 5;178(6):1313-1328.e13. doi: 10.1016/j.cell.2019.08.010.
Davidson LE, Fiorino AM, Snydman DR, Hibberd PL. Lactobacillus GG as an immune adjuvant for live-attenuated influenza vaccine in healthy adults: a randomized double-blind placebo-controlled trial. Eur J Clin Nutr. 2011 Apr;65(4):501-7. doi: 10.1038/ejcn.2010.289. Epub 2011 Feb 2.
Torjesen I. Covid-19: Norway investigates 23 deaths in frail elderly patients after vaccination. BMJ. 2021 Jan 15;372:n149. doi: 10.1136/bmj.n149. No abstract available.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
IMPACT Study
Identifier Type: -
Identifier Source: org_study_id