Efficacy of Single Dose Anti-thymocyte Globulin in the Modulation of T Lymphocytes in Kidney Transplantation
NCT ID: NCT04835948
Last Updated: 2021-04-19
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
200 participants
OBSERVATIONAL
2018-10-20
2021-04-13
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Currently, the usual cumulative dose of ATG for induction in kidney transplant patients is 6mg/kg, in divided doses. However, the ideal dose and duration of therapy are still the subject of studies, with protocols between centers varying from total doses of 3 to 6 mg/kg, either fractionated or single, to achieve the lowest dose with fewer undesirable effects, and with reduced length of inpatient stay.
The use of ATG in a single dose of 3 mg/kg was successfully assessed for risks of infection and rejection in patients with low immunological risk.
This study proposes evaluating the efficacy and safety of a single 3mg/kg dose of ATG for patients with low and standard immune risk, with TCD3+ lymphocyte monitoring, to assess the duration of the TCD3+ cells in the peripheral blood.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Efficacy and Safety of Rabbit Antithymocyte Globulin 3mg/kg in Kidney Transplant Patients Under Steroid-free and CNI Minimization Maintenance Immunosuppressive Regimen
NCT03088280
Anti-T-Lymphocyte Globulin (ATG) in Renal Transplantation of Kidneys With a Non-Heart-Beating (NHB) Donor
NCT00733733
Efficacy and Safety of Two Anti-T-lymphocyte Immune Globulin (ATG-F) Induction Regimens in Anew Kidney Transplant Patients
NCT02267512
Comparison of ATG to Thymoglobuline in Renal Transplantation
NCT00861536
Single Dose Thymoglobulin for Induction in Adult Renal Allograft Recipients
NCT00235781
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Anti-thymocyte globulin (ATG) has a key role in the immunosuppressive induction regimens used in kidney transplants as well as in the treatment of acute rejections. It is a purified solution that contains a variety of T cell-specific immunoglobulins, including CD2, CD3, CD4, CD8, CD11a, CD18, CD25, HLA-DR, and class I HLA (human leukocyte antigen). This solution is produced by immunizing rabbits with human thymocytes. The use of these agents is particularly important in inducing patients who are more predisposed to the nephrotoxic effects of calcineurin inhibitors (CI), allowing the delayed introduction of the CI. Induction with antibodies is also of great value in patients with higher immunological risk, such as pediatric, Afro-descendants, re-transplanted, and previously sensitized to HLA antigens recipients.
Polyclonal antibodies have definite benefits in kidney transplantation, but their use is associated with hematological, infectious, and neoplastic complications. The use of reduced doses of ATG has been the subject of recent studies, but still with inconclusive results.
The concept of monitoring T cells in patients receiving ATG was first proposed in 1975 to improve efficacy in preventing acute rejection and avoiding excessive immunosuppression. The dose regimen is guided by a daily count of peripheral blood TCD3+ lymphocytes. Monitoring the dose of thymoglobulin through its biological effects on T cells is a rational and safe method of titrating the dose of that antibody. This way, it is possible to reduce the total amount of drug administered to the patient and, consequently, reduce undesirable complications, as well as the cost of treatment, hopefully without losing effect on the benefit of immunosuppression.
A 60% reduction in the total dose of ATG and 58% reduction in therapy cost was observed in patients who were monitored using TCD3+ cell counts. Currently, the usual total dose of ATG for induction in kidney transplant patients is 6mg/kg, divided into 4 doses, which can be administered from day zero until day 14 (maximum) of transplantation. However, the ideal dose and duration of therapy are still the subject of investigation, with protocols between centers varying from total doses of 3 to 6 mg/kg, fractionated or single, to attempt to achieve the lowest dose with fewer undesirable effects, and with reduced length of inpatient stay. The use of ATG in a single dose of 3 mg/kg was successfully assessed for risks of infection and rejection in patients with low immunological risk.
Considering that the adverse effects associated with the use of ATG are relevant in the clinical context of kidney transplantation, the use of a lower dose, keeping its immunomodulatory effect, with a safer profile, is desirable.
The study evaluates the efficacy and safety of a single dose of 3mg/kg ATG for patients with low and standard immune risk, with TCD3+ lymphocyte monitoring, to assess the clinical efficacy and the modulation of the T cell response.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
CASE_CONTROL
RETROSPECTIVE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Multiple doses of anti-thymocyte globulin (ATG)
Control group that received fractionated doses of 1.5 mg/kg adding up to a total of 6 mg/kg
single dose of Anti-thymocyte globulin
Used anti-thymocyte globulin (ATG) in a single dose of 3 mg/kg for immunosuppression induction in the immediate postoperative period
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
single dose of Anti-thymocyte globulin
Used anti-thymocyte globulin (ATG) in a single dose of 3 mg/kg for immunosuppression induction in the immediate postoperative period
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Control group consisting of patients from the same and previous period, who received fractionated ATG dosing up to 6 mg/kg total dose.
Exclusion Criteria
* Patients who died within 24 hours after transplantation.
* Patients who had a transplant nephrectomy within 24 hours after transplantation.
* Pediatric recipients (\< 14 years old).
* Recipients with incomplete data.
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Hospital de Clinicas de Porto Alegre
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Fabiani Palagi Machado
Principal Investigator
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Hospital de Clínicas de Porto Alegre
Porto Alegre, Rio Grande do Sul, Brazil
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Nankivell BJ, Alexander SI. Rejection of the kidney allograft. N Engl J Med. 2010 Oct 7;363(15):1451-62. doi: 10.1056/NEJMra0902927. No abstract available.
Taylor DO, Kfoury AG, Pisani B, Hammond EH, Renlund DG. Antilymphocyte-antibody prophylaxis: review of the adult experience in heart transplantation. Transplant Proc. 1997 Dec;29(8A):13S-15S. doi: 10.1016/s0041-1345(97)00849-x. No abstract available.
First MR. Immunologically high-risk recipient strategies. Transplant Proc. 1999 Feb-Mar;31(1-2):243-6. doi: 10.1016/s0041-1345(98)01520-6. No abstract available.
Clesca P, Dirlando M, Park SI, Garcia R, Ferraz E, Pinheiro-Machado PG, Kushnaroff L, Tedesco-Silva H Jr, Medina-Pestana JO. Thymoglobulin and rate of infectious complications after transplantation. Transplant Proc. 2007 Mar;39(2):463-4. doi: 10.1016/j.transproceed.2007.01.024.
Gaber AO, Knight RJ, Patel S, Gaber LW. A review of the evidence for use of thymoglobulin induction in renal transplantation. Transplant Proc. 2010 Jun;42(5):1395-400. doi: 10.1016/j.transproceed.2010.04.019.
Djamali A, Turc-Baron C, Portales P, Leverson G, Chong G, Clot J, Mourad G. Low dose antithymocyte globulins in renal transplantation: daily versus intermittent administration based on T-cell monitoring. Transplantation. 2000 Mar 15;69(5):799-805. doi: 10.1097/00007890-200003150-00021.
Thiyagarajan UM, Ponnuswamy A, Bagul A. Thymoglobulin and its use in renal transplantation: a review. Am J Nephrol. 2013;37(6):586-601. doi: 10.1159/000351643. Epub 2013 Jun 12.
Alangaden GJ, Thyagarajan R, Gruber SA, Morawski K, Garnick J, El-Amm JM, West MS, Sillix DH, Chandrasekar PH, Haririan A. Infectious complications after kidney transplantation: current epidemiology and associated risk factors. Clin Transplant. 2006 Jul-Aug;20(4):401-9. doi: 10.1111/j.1399-0012.2006.00519.x.
Yang JW, Wang JN, Men TY, Zhang XM, Li XD, Shen B, Li GY, Chen DD. Comparison of clinical outcome of low-dose and high-dose rabbit antithymocyte globulin induction therapy in renal transplantation: a single-center experience. Ann Transplant. 2014 Jun 6;19:277-82. doi: 10.12659/AOT.890069.
Bishop G, Cosimi AB, Voynow NK, Whelchel JD, Wortis HH. Effect of immunosuppressive therapy for renal allografts on the number of circulating sheep red blood cells rosetting cells. Transplantation. 1975 Aug;20(2):123-9. doi: 10.1097/00007890-197508000-00005.
Wang CJ, Tuffaha A, Zhang D, Diederich DA, Wetmore JB. A CD3+ count-based thymoglobulin induction regimen permits delayed introduction of calcineurin inhibitors in kidney transplantation. Clin Transplant. 2012 Nov-Dec;26(6):900-9. doi: 10.1111/j.1399-0012.2012.01656.x. Epub 2012 Jun 4.
Peddi VR, Bryant M, Roy-Chaudhury P, Woodle ES, First MR. Safety, efficacy, and cost analysis of thymoglobulin induction therapy with intermittent dosing based on CD3+ lymphocyte counts in kidney and kidney-pancreas transplant recipients. Transplantation. 2002 May 15;73(9):1514-8. doi: 10.1097/00007890-200205150-00025.
Abouna GM, al-Abdullah IH, Kelly-Sullivan D, Kumar MS, Loose J, Phillips K, Yost S, Seirka D. Randomized clinical trial of antithymocyte globulin induction in renal transplantation comparing a fixed daily dose with dose adjustment according to T cell monitoring. Transplantation. 1995 Jun 15;59(11):1564-8.
Uber WE, Uber LA, VanBakel AB, Crumbley AJ 3rd, Pereira NL, Ikonomidis JS, Feldman DS. CD3 monitoring and thymoglobulin therapy in cardiac transplantation: clinical outcomes and pharmacoeconomic implications. Transplant Proc. 2004 Dec;36(10):3245-9. doi: 10.1016/j.transproceed.2004.11.099.
Krasinskas AM, Kreisel D, Acker MA, Bavaria JE, Pochettino A, Kotloff RM, Arcasoy S, Blumenthal N, Kamoun M, Moore JS, Rosengard BR. CD3 monitoring of antithymocyte globulin therapy in thoracic organ transplantation. Transplantation. 2002 Apr 27;73(8):1339-41. doi: 10.1097/00007890-200204270-00026.
Grandtnerova B, Mocikova H, Kohutova M. CD2+, CD3+, and CD19+ depletion after a course of antithymocyte globulin for a steroid-resistant rejection. Transplant Proc. 1997 Nov;29(7):2958-9. doi: 10.1016/s0041-1345(97)00744-6. No abstract available.
Kho MM, Bouvy AP, Cadogan M, Kraaijeveld R, Baan CC, Weimar W. The effect of low and ultra-low dosages Thymoglobulin on peripheral T, B and NK cells in kidney transplant recipients. Transpl Immunol. 2012 Jun;26(4):186-90. doi: 10.1016/j.trim.2012.02.003. Epub 2012 Mar 5.
Nafar M, Dalili N, Poor-Reza-Gholi F, Ahmadpoor P, Samadian F, Samavat S. The appropriate dose of thymoglobulin induction therapy in kidney transplantation. Clin Transplant. 2017 Jun;31(6). doi: 10.1111/ctr.12977. Epub 2017 Apr 18.
Tedesco-Silva H, Felipe C, Ferreira A, Cristelli M, Oliveira N, Sandes-Freitas T, Aguiar W, Campos E, Gerbase-DeLima M, Franco M, Medina-Pestana J. Reduced Incidence of Cytomegalovirus Infection in Kidney Transplant Recipients Receiving Everolimus and Reduced Tacrolimus Doses. Am J Transplant. 2015 Oct;15(10):2655-64. doi: 10.1111/ajt.13327. Epub 2015 May 18.
Mohty M, Bacigalupo A, Saliba F, Zuckermann A, Morelon E, Lebranchu Y. New directions for rabbit antithymocyte globulin (Thymoglobulin((R))) in solid organ transplants, stem cell transplants and autoimmunity. Drugs. 2014 Sep;74(14):1605-34. doi: 10.1007/s40265-014-0277-6.
Bauer AC, Franco RF, Manfro RC. Immunosuppression in Kidney Transplantation: State of the Art and Current Protocols. Curr Pharm Des. 2020;26(28):3440-3450. doi: 10.2174/1381612826666200521142448.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
38361620.0.0000.5327
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.