Transcranial Magnetic Stimulation and Mental Representation Techniques for the Treatment of Stroke Patients
NCT ID: NCT04815486
Last Updated: 2023-11-30
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
20 participants
INTERVENTIONAL
2021-05-01
2023-05-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Despite the lack of objective prognostic factors regarding the patient´s functionality after a stroke, we know that age, the level of initial disability, and the location and size of the lesion are elements that affect the evolution of post-stroke rehabilitation.
After stroke, the recovery of lost functions in the brain is achieved thanks to reorganizing networks in a process known as plasticity. Some damaged brain tissue may recover, or undamaged areas take over some functions.
One of the most relevant aspects of the rehabilitation prognosis is the time of evolution. After stroke, improvement is noticeably reduced over the second month, finding stabilization around the sixth month. One of the reasons for this is the reduction of neuroplasticity. There are indicative studies that reflect that, six months after a stroke, more than 60% of subjects will have a non-functional hand for Basic Activities of Daily Living (BADL), and 20-25% will not be able to walk without assistance. This determines the important global burden that stroke represents. It is relevant to emphasize the degree of disability after the rehabilitation process will be determined by the combination of existing motor, sensory and neuropsychological deficiencies.
In the last years, several non-invasive neuromodulation techniques have been shown efficient to enhance plasticity and stroke recovery. Among these interventions we can find exogenous neuromodulation, meaning that the neuromodulator stimulus comes from an external source, as is the case with rTMS (repetitive transcranial magnetic stimulation) which has the capacity to change the cortical excitability depending on the frequency of the magnetic pulses. Low frequencies (≤ 1 Hz) reduce local neural activity and high frequencies (≥ 5 Hz) increase cortical excitability. This technique has been successfully used bilaterally, stimulating the injured hemisphere and inhibiting the healthy one, to treat the interhemispheric inhibition phenomenon in stroke patients as it influences stroke recovery.
On the other hand, there are endogenous neuromodulation techniques that depend on the capacity of the subject to modulate its own brain activity. This can be achieved using neurofeedback (NFB), this consists of recording information of brain activity using electroencephalography (EEG) or functional magnetic resonance (fMRI) and displaying it to the subject in such way that he can receive a real time information of his own brain function. Virtual reality allows a new dimension on the neurofeedback immersion, and is likely to increase its efficacy. Stroke patients have been trained to reinforce certain EEG rhythms related with motor performance using NFB technique showing favourable effects on rehabilitation outcomes.
Some other techniques aiming to increase brain plasticity use the practice of imagination of movement of the affected hemibody. This is known as motor imagery and can be also enhanced through the use of brain computer interfaces. All the neuromodulation techniques are used to complement but not as a replacement of conventional rehabilitation.
On one hand exogenous neuromodulation effects are produced mainly by changes directly induced in cortical excitability and on the other hand endogenous neuromodulation is believed to have more widespread subcortical effects. One of the probable causes of the short-term effects of these techniques is the ceiling effect of changes in cortical excitability that can be achieved non-invasively, but despite of the good results achieved with the use of non-invasive neuromodulation techniques individually, there is a shortage of validated neurorehabilitation protocols that integrate different approaches that have been proven to be effective individually.
Neurow system (NeuroRehabLab, Lisbon, Portugal) is an immersive multimodal BCI-VR training system that combines motor imagery and neurofeedback through BCIs, using virtual reality has been designed to be used in chronic stroke patients, its efficacy has been shown in a pilot study.
Both approaches, the Neurow system (NeuroRehabLab, Lisbon, Portugal) and bilateral rTMS protocols are likely to complement their effects achieving a stronger neuroplasticity enhancement in stroke patients. Both have been used separately for the treatment of motor sequelae in the upper limbs after stroke. The effects of these combined techniques are not likely to be based only in the increase of cortical excitability but also on subcortical mechanisms.
The main objective of this study is to carry out a double-blind, randomized, controlled trial aiming to study the clinical effect of Neurow system (NeuroRehabLab, Lisbon, Portugal) over bilateral rTMS plus conventional rehabilitation in upper limb motor sequelae after subacute stroke (3 to 12 months). We will look for changes in 1. Isometric strength in upper limb, 2. Functional motor scales of upper limb, 3. Hand dexterity 4. Cortical excitability changes. Our main hypothesis is that both neuromodulation techniques combined will be superior to the use of rTMS alone as adjuvant therapy to conventional rehabilitation.
This protocol combines techniques that have proven to be cost-effective. If it is shown that the clinical improvement with this combination is significant, it will be open a new line of combined neuromodulation approaches to reach and effective method for the upper limb motor neurorehabilitation of after a stroke.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Keywords
Explore important study keywords that can help with search, categorization, and topic discovery.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NON_RANDOMIZED
CROSSOVER
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Bilateral rTMS combined with MI through a BCI training platform in VR with NeuRow
Sequential active rTMS at low frequency (healthy hemisphere) and high-frequency (injured hemisphere) application during 10 sessions in two weeks, and Motor Imagery (MI) treatment through the BCI training paradigm in VR (NeuRow) for 12 sessions in four weeks (3 sessions a week).The first 6 MI-neurofeedback sessions will carry out after bilateral stimulation with rTMS (i.e., rTMS as a priming method during the first two weeks), and the last 6 sessions, without rTMS as prior priming during the last two weeks
Repetitive Transcranial Magnetic Stimulation (rTMS)
Active rTMS in 10 daily sessions in two weeks of sequential application of: 90% RMT at 1Hz, 1000 pulses/day, 25s inter train on M1 of lesioned hemisphere and 90% RMT at 10Hz, 1000 pulses/day, 50s inter train on M1 of healthy hemisphere.
Repetitive TMS in bilateral cortical primary motor area
Sequential active rTMS at low frequency (healthy hemisphere) and high-frequency (injured hemisphere) application during 10 sessions in two weeks.
Motor Imagery (MI) through a Brain-Computer Interface (BCI) training platform in Virtual Reality (VR) with NeuRow
It will consist of a combination of the bilateral rTMS protocol and the MI-neurofeedback training. During this therapy, the patient received 10 consecutive daily sessions of bilateral rTMS (Monday to Friday, two weeks), with the same stimulation parameters as another therapy, and 12 non-consecutive sessions of MI-neurofeedback (three times a week for four weeks). The first 6 MI-neurofeedback sessions were carried out after bilateral stimulation with rTMS (i.e., rTMS as a priming method during the first two weeks), and the last 6 sessions, without rTMS as prior priming during the last two weeks.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Repetitive Transcranial Magnetic Stimulation (rTMS)
Active rTMS in 10 daily sessions in two weeks of sequential application of: 90% RMT at 1Hz, 1000 pulses/day, 25s inter train on M1 of lesioned hemisphere and 90% RMT at 10Hz, 1000 pulses/day, 50s inter train on M1 of healthy hemisphere.
Motor Imagery (MI) through a Brain-Computer Interface (BCI) training platform in Virtual Reality (VR) with NeuRow
It will consist of a combination of the bilateral rTMS protocol and the MI-neurofeedback training. During this therapy, the patient received 10 consecutive daily sessions of bilateral rTMS (Monday to Friday, two weeks), with the same stimulation parameters as another therapy, and 12 non-consecutive sessions of MI-neurofeedback (three times a week for four weeks). The first 6 MI-neurofeedback sessions were carried out after bilateral stimulation with rTMS (i.e., rTMS as a priming method during the first two weeks), and the last 6 sessions, without rTMS as prior priming during the last two weeks.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Ischemic or hemorrhagic cerebrovascular injury diagnosed by a neurologist and who have at least one brain-imaging test.
The onset of hemispheric ischemic or hemorrhagic stroke\> 3 months.
Presence of upper limb motor sequelae due to stroke.
Sufficient cognitive ability to understand and perform tasks: Token Test\> 11.
Stability in antispastic medication for more than 5 days.
Able to read and write.
Exclusion Criteria
Pacemakers, medication pumps, metal implants in the head (except dental implants)
Clinical unstability
Other pre-existing neurological diseases or previous cerebrovascular accidents with sequelae.
Sensory aphasia
Previous TMS after stroke
Hemispatial neglect,
Flaccid paralysis Brunnstrom's stage \< 1
Visual problems
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Hospital Beata María Ana
OTHER
Universidad Francisco de Vitoria
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Juan Pablo Romero Muñoz, MD PhD
Role: PRINCIPAL_INVESTIGATOR
Universidad Francisco de Vitoria, Facultad de Ciencias Experimentales
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Hospital Beata Maria Ana
Madrid, , Spain
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Vourvopoulos A, Bermudez I Badia S. Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis. J Neuroeng Rehabil. 2016 Aug 9;13(1):69. doi: 10.1186/s12984-016-0173-2.
Vourvopoulos A, Jorge C, Abreu R, Figueiredo P, Fernandes JC, Bermudez I Badia S. Efficacy and Brain Imaging Correlates of an Immersive Motor Imagery BCI-Driven VR System for Upper Limb Motor Rehabilitation: A Clinical Case Report. Front Hum Neurosci. 2019 Jul 11;13:244. doi: 10.3389/fnhum.2019.00244. eCollection 2019.
Takeuchi N, Izumi S. Maladaptive plasticity for motor recovery after stroke: mechanisms and approaches. Neural Plast. 2012;2012:359728. doi: 10.1155/2012/359728. Epub 2012 Jun 26.
Takeuchi N, Tada T, Toshima M, Matsuo Y, Ikoma K. Repetitive transcranial magnetic stimulation over bilateral hemispheres enhances motor function and training effect of paretic hand in patients after stroke. J Rehabil Med. 2009 Nov;41(13):1049-54. doi: 10.2340/16501977-0454.
Zhang L, Xing G, Shuai S, Guo Z, Chen H, McClure MA, Chen X, Mu Q. Low-Frequency Repetitive Transcranial Magnetic Stimulation for Stroke-Induced Upper Limb Motor Deficit: A Meta-Analysis. Neural Plast. 2017;2017:2758097. doi: 10.1155/2017/2758097. Epub 2017 Dec 21.
Pichiorri F, Morone G, Petti M, Toppi J, Pisotta I, Molinari M, Paolucci S, Inghilleri M, Astolfi L, Cincotti F, Mattia D. Brain-computer interface boosts motor imagery practice during stroke recovery. Ann Neurol. 2015 May;77(5):851-65. doi: 10.1002/ana.24390. Epub 2015 Mar 27.
Dionisio A, Duarte IC, Patricio M, Castelo-Branco M. The Use of Repetitive Transcranial Magnetic Stimulation for Stroke Rehabilitation: A Systematic Review. J Stroke Cerebrovasc Dis. 2018 Jan;27(1):1-31. doi: 10.1016/j.jstrokecerebrovasdis.2017.09.008. Epub 2017 Oct 27.
Sasaki N, Mizutani S, Kakuda W, Abo M. Comparison of the effects of high- and low-frequency repetitive transcranial magnetic stimulation on upper limb hemiparesis in the early phase of stroke. J Stroke Cerebrovasc Dis. 2013 May;22(4):413-8. doi: 10.1016/j.jstrokecerebrovasdis.2011.10.004. Epub 2011 Dec 15.
Pfurtscheller G, Neuper C, Muller GR, Obermaier B, Krausz G, Schlogl A, Scherer R, Graimann B, Keinrath C, Skliris D, Wortz M, Supp G, Schrank C. Graz-BCI: state of the art and clinical applications. IEEE Trans Neural Syst Rehabil Eng. 2003 Jun;11(2):177-80. doi: 10.1109/TNSRE.2003.814454.
Cogne M, Gil-Jardine C, Joseph PA, Guehl D, Glize B. Seizure induced by repetitive transcranial magnetic stimulation for central pain: Adapted guidelines for post-stroke patients. Brain Stimul. 2017 Jul-Aug;10(4):862-864. doi: 10.1016/j.brs.2017.03.010. Epub 2017 Mar 23. No abstract available.
Duncan PW, Wallace D, Lai SM, Johnson D, Embretson S, Laster LJ. The stroke impact scale version 2.0. Evaluation of reliability, validity, and sensitivity to change. Stroke. 1999 Oct;30(10):2131-40. doi: 10.1161/01.str.30.10.2131.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
Handboost
Identifier Type: -
Identifier Source: org_study_id