Multicenter Analysis of Efficacy and Outcomes of Extracorporeal Photopheresis as Treatment of Chronic Lung Allograft Dysfunction

NCT ID: NCT04792294

Last Updated: 2021-03-10

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

UNKNOWN

Total Enrollment

800 participants

Study Classification

OBSERVATIONAL

Study Start Date

2005-01-01

Study Completion Date

2021-12-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Lung transplantation is an established therapy for end-stage lung disease such as chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, cystic fibrosis and pulmonary hypertension. However, Chronic Lung Allograft Dysfunction (CLAD) is a major cause of morbidity and mortality in long-term survivors. The 5-year survival rate is reported to be 50%, which is considerably inferior compared to other solid organ transplantation. In addition, the financial burden of CLAD (around 80.000 euro/year for a patient with CLAD) is considerable. No curative therapy is available yet. To date, the two most effective treatment are azithromycin and extracorporeal photopheresis. Azithromycin is used as first-line treatment and it is effective in stopping FEV1 decline, however its effects are only limited to a set of patients. ECP can be used as second-line treatment in patients unresponsive to azithromycin. ECP has been firstly developed for treatment of cutaneous T cell lymphomas and later used in a variety of other indications including solid organ transplantation. The process starts with leukapheresis, followed by incubation of the isolated cells with 8-methoxypsoralen (8-MOP) and subsequent activation of 8-MOP with ultraviolet A radiation. At the end, the cells are reinfused into the patient. 8-MOP is a biologically inert substance, but in the presence of UVA light it cross-links DNA by forming covalent bonds with pyrimidine bases and causes apoptosis. ECP is effective in the palliative treatment of cutaneous T-cell lymphoma but its effectiveness was also shown in several other T-cell-mediated diseases, particularly in the treatment and prevention of acute and chronic graft-versus-host disease. In depth knowledge on the mechanisms whereby ECP manipulates the immune system are still unclear. Most of the experimental studies have been performed in murine models of GvHD. Apoptotic cells isolated during ECP treatment have the potential to induce IL-10 secretion, reduce dendritic cells activation and increase percentage of Tregs. In addition, ECP reduces the production of IL-6 and TNF-α and increases TGF-β production. In lung transplantation, ECP treatment is used as second-line treatment of CLAD and it has the potential to stabilize lung function decline and to improve long-term graft. According to the published literature, however, approximately 30 to 40% of treated recipients did not profit from ECP. Greer and colleagues found that RAS patients as well as rapid lung function decliners showed lower rate of response and worse long-term outcomes. On the contrary in a more recent analysis only BOS diagnosis was associated with better outcomes. A single prospective interventional study was published by our group and it confirmed results from other previous retrospective analysis. Up to now, no clear predictors for response have been identified yet.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Lung Transplant Rejection

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

OTHER

Study Time Perspective

RETROSPECTIVE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Lung transplant recipients with chronic lung allograft dysfunction

Lung transplant recipients with chronic lung allograft dysfunction, who underwent extracorporeal photopheresis

Extracorporeal photopheresis

Intervention Type DEVICE

ECP can be used as second-line treatment in patients unresponsive to azithromycin. ECP has been firstly developed for treatment of cutaneous T cell lymphomas and later used in a variety of other indications including solid organ transplantation. The process starts with leukapheresis, followed by incubation of the isolated cells with 8-methoxypsoralen (8-MOP) and subsequent activation of 8-MOP with ultraviolet A radiation. At the end, the cells are reinfused into the patient. 8-MOP is a biologically inert substance, but in the presence of UVA light it cross-links DNA by forming covalent bonds with pyrimidine bases and causes apoptosis.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Extracorporeal photopheresis

ECP can be used as second-line treatment in patients unresponsive to azithromycin. ECP has been firstly developed for treatment of cutaneous T cell lymphomas and later used in a variety of other indications including solid organ transplantation. The process starts with leukapheresis, followed by incubation of the isolated cells with 8-methoxypsoralen (8-MOP) and subsequent activation of 8-MOP with ultraviolet A radiation. At the end, the cells are reinfused into the patient. 8-MOP is a biologically inert substance, but in the presence of UVA light it cross-links DNA by forming covalent bonds with pyrimidine bases and causes apoptosis.

Intervention Type DEVICE

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

Diagnosis of CLAD Adult transplant recipients (\>18 years)

Exclusion Criteria

ECP for other diagnosis Recipients of multi-organ transplantation Recipients of single lung transplantation
Minimum Eligible Age

18 Years

Maximum Eligible Age

70 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Medical University of Vienna

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Alberto Benazzo

MD, Principal Investigator

Responsibility Role PRINCIPAL_INVESTIGATOR

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

1541/2020

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Pathologist Lung Transplant Study
NCT04887779 WITHDRAWN NA