Advanced Cardiac Imaging To Predict Embolic Stroke On Brain MRI: A Pilot Study

NCT ID: NCT04769310

Last Updated: 2024-12-20

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

RECRUITING

Clinical Phase

NA

Total Enrollment

120 participants

Study Classification

INTERVENTIONAL

Study Start Date

2021-04-26

Study Completion Date

2026-01-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Demonstrating the pathophysiological link between Left Atrial (LA) and Left Atrial Appendage (LAA) pathology and embolic strokes in non-Atrial Fibrillation (AF) individuals represents a major advance in stroke prevention strategies. Instead of relying on non-specific criteria for stroke risk assessment, the investigators propose to identify individuals with high-risk of embolic stroke using imaging criteria that reflect the underlying pathophysiology of embolic stroke of cardiac origin. the investigators can therefore lay the groundwork for future anticoagulation strategies for stroke prevention beyond AF.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

The investigators propose a cross-sectional cohort study, where individuals with no history of AF and with a Congestive heart failure, Hypertension, Age ≥ 75 years, Diabetes mellitus, Stroke or transient ischemic attack (TIA), Vascular disease, Age 65 to 74 years, Sex category score (CHA2DS2VASC) ≥3, type II diabetes, congestive heart failure or a history of stroke/TIA will be included. Data on demographics, personal health habits, medications, and medical history will be obtained by interviewing participants and reviewing the electronic medical records. All participants will undergo a Cardiac Magnetic Resonance imaging (CMR) to assess for markers of LA and LAA pathology. Markers of LA and LAA pathology that will be studied include: LA fibrosis level, LA functional parameters, LA shape characteristics, and LAA characteristics (including morphology, orifice area and flow velocity). Additionally, all participants will undergo a brain Magnetic Resonance Imaging (MRI) at the same visit to assess for the presence of embolic-appearing brain infarcts, regardless of previous stroke-related symptoms.

The investigators will analyze the association between each cardiac imaging feature and the prevalence of embolic-appearing strokes on brain MRI to determine whether patients with higher LA and LAA remodeled features are more likely to have embolic-appearing brain infarcts on MRI. The LA and LAA pathology imaging features with the strongest statistical association will be used to develop an imaging predictive score capable of identifying patients with the highest risk of embolic stroke.

All brain and cardiac imaging data will be assessed by experienced operators at Tulane Medical Center facilities. Operators analyzing CMR will be blinded to brain MRI results, and operators assessing brain MRI will be blinded to CMR results. The study will include a single center study at Tulane Medical Center and Clinics, with investigators from different medical specialties, and the proper facilities and equipment to conduct the project accurately and safely. The investigators expect a recruitment of 120 subjects over a period of 18 months from both cardiology and neurology clinics to complete the study.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Atrial Fibrillation Stroke Stroke, Cardiovascular Vascular Cognitive Impairment Strokes Thrombotic Stroke, Ischemic

Keywords

Explore important study keywords that can help with search, categorization, and topic discovery.

Magnetic Resonance Imaging Cardiac Magnetic Resonance Imaging Brain infarcts Left atrial Left atrial appendage Non invasive cardiac imaging

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

NA

Intervention Model

SINGLE_GROUP

All patients will undergo a CMR to evaluate for LA and LAA high-risk features on either a 1.5 or 3 Tesla clinical MR scanner. CMR protocol will include Cine MRI, contrast-enhanced (CE) MR Angiography (MRA), time-resolved 2D phase-contrast (PC) MRI, and 3D late gadolinium enhancement (LGE) involving gadolinium injection. Gadolinium is a contrast product that helps define areas of fibrosis in the LA.

Brain MRI will be used for the detection of embolic infarcts assessed on high-resolution brain MRI acquisitions. The high-resolution brain MRI with no contrast will include the following sequences for most accurate assessment of embolic lesions: 3D T1 Magnetization Prepared Rapid Acquisition Gradient Echo (MPRAGE), 3D fluid attenuated inversion recovery (FLAIR), diffusion weighted imaging (DWI), apparent diffusion coefficient maps (ADC), and susceptibility weighted imaging (SWI).
Primary Study Purpose

DIAGNOSTIC

Blinding Strategy

NONE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Patient arm

All patients will undergo a CMR to evaluate for LA and LAA high-risk features on either a 1.5 or 3 Tesla clinical MR scanner. Gadolinium injection will be administered. Gadolinium is a contrast product that helps define areas of fibrosis in the LA.

High-resolution brain MRI with no contrast will include the following sequences for most accurate assessment of embolic lesions: 3D T1 MPRAGE, 3D FLAIR, DWI, ADC, and SWI

Group Type OTHER

Cardiac and Brain MRI

Intervention Type DEVICE

A CMR to evaluate for LA and LAA high-risk features on either a 1.5 or 3 Tesla clinical MR scanner will be used. Gadolinium injection will be administered. Gadolinium is a contrast product that helps define areas of fibrosis in the LA.

High-resolution brain MRI with no contrast will include the following sequences for most accurate assessment of embolic lesions: 3D T1 MPRAGE, 3D FLAIR, DWI, ADC, and SWI

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Cardiac and Brain MRI

A CMR to evaluate for LA and LAA high-risk features on either a 1.5 or 3 Tesla clinical MR scanner will be used. Gadolinium injection will be administered. Gadolinium is a contrast product that helps define areas of fibrosis in the LA.

High-resolution brain MRI with no contrast will include the following sequences for most accurate assessment of embolic lesions: 3D T1 MPRAGE, 3D FLAIR, DWI, ADC, and SWI

Intervention Type DEVICE

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Male or female patients
* 18 Years and older
* No history of atrial fibrillation
* CHA2DS2VASC score ≥3
* History pf type II diabetes
* History of congestive heart failure or a history of transient ischemic attack (TIA)/stroke without an otherwise defined stroke etiology such as large vessel or small vessel disease

Exclusion Criteria

* History of atrial fibrillation
* Patients who had a clinically symptomatic acute stroke within the last 30-days
* Any health-related gadolinium/MRI contraindication (including previous allergic reaction to Gadolinium, pacemakers, defibrillators, other devices/implants contraindicated for MRI)
* Estimated glomerular filtration rate (eGFR) cutoff in patients with Chronic kidney disease (CKD) where gadolinium cannot be used equals an eGFR \<30 ml/min
* Weighing \> 300 lbs (as CMR image quality decreases due to increased body mass index)
* Current pregnancy or breastfeeding
* Cognitive impairment preventing the patient from giving an informed consent
Minimum Eligible Age

18 Years

Maximum Eligible Age

120 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Tulane University

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Nassir Marrouche, MD

Role: PRINCIPAL_INVESTIGATOR

Tulane School of Medicine

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Tulane University Medical Center

New Orleans, Louisiana, United States

Site Status RECRUITING

Countries

Review the countries where the study has at least one active or historical site.

United States

Central Contacts

Reach out to these primary contacts for questions about participation or study logistics.

Quintrele Jones, MPH

Role: CONTACT

Phone: 504-988-3063

Email: [email protected]

Facility Contacts

Find local site contact details for specific facilities participating in the trial.

Quintrele Jones, MPH

Role: primary

References

Explore related publications, articles, or registry entries linked to this study.

Writing Group Members; Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ, Huffman MD, Isasi CR, Jimenez MC, Judd SE, Kissela BM, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Magid DJ, McGuire DK, Mohler ER 3rd, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Rosamond W, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Woo D, Yeh RW, Turner MB; American Heart Association Statistics Committee; Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association. Circulation. 2016 Jan 26;133(4):e38-360. doi: 10.1161/CIR.0000000000000350. Epub 2015 Dec 16. No abstract available.

Reference Type BACKGROUND
PMID: 26673558 (View on PubMed)

Saver JL. CLINICAL PRACTICE. Cryptogenic Stroke. N Engl J Med. 2016 May 26;374(21):2065-74. doi: 10.1056/NEJMcp1503946. No abstract available.

Reference Type BACKGROUND
PMID: 27223148 (View on PubMed)

Fanning JP, Wong AA, Fraser JF. The epidemiology of silent brain infarction: a systematic review of population-based cohorts. BMC Med. 2014 Jul 9;12:119. doi: 10.1186/s12916-014-0119-0.

Reference Type BACKGROUND
PMID: 25012298 (View on PubMed)

Fanning JP, Wesley AJ, Wong AA, Fraser JF. Emerging spectra of silent brain infarction. Stroke. 2014 Nov;45(11):3461-71. doi: 10.1161/STROKEAHA.114.005919. Epub 2014 Oct 7. No abstract available.

Reference Type BACKGROUND
PMID: 25293663 (View on PubMed)

Vermeer SE, Prins ND, den Heijer T, Hofman A, Koudstaal PJ, Breteler MM. Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med. 2003 Mar 27;348(13):1215-22. doi: 10.1056/NEJMoa022066.

Reference Type BACKGROUND
PMID: 12660385 (View on PubMed)

Gupta A, Giambrone AE, Gialdini G, Finn C, Delgado D, Gutierrez J, Wright C, Beiser AS, Seshadri S, Pandya A, Kamel H. Silent Brain Infarction and Risk of Future Stroke: A Systematic Review and Meta-Analysis. Stroke. 2016 Mar;47(3):719-25. doi: 10.1161/STROKEAHA.115.011889.

Reference Type BACKGROUND
PMID: 26888534 (View on PubMed)

Brambatti M, Connolly SJ, Gold MR, Morillo CA, Capucci A, Muto C, Lau CP, Van Gelder IC, Hohnloser SH, Carlson M, Fain E, Nakamya J, Mairesse GH, Halytska M, Deng WQ, Israel CW, Healey JS; ASSERT Investigators. Temporal relationship between subclinical atrial fibrillation and embolic events. Circulation. 2014 May 27;129(21):2094-9. doi: 10.1161/CIRCULATIONAHA.113.007825. Epub 2014 Mar 14.

Reference Type BACKGROUND
PMID: 24633881 (View on PubMed)

Daoud EG, Glotzer TV, Wyse DG, Ezekowitz MD, Hilker C, Koehler J, Ziegler PD; TRENDS Investigators. Temporal relationship of atrial tachyarrhythmias, cerebrovascular events, and systemic emboli based on stored device data: a subgroup analysis of TRENDS. Heart Rhythm. 2011 Sep;8(9):1416-23. doi: 10.1016/j.hrthm.2011.04.022. Epub 2011 Apr 23.

Reference Type BACKGROUND
PMID: 21699833 (View on PubMed)

Friberg L, Rosenqvist M, Lip GY. Evaluation of risk stratification schemes for ischaemic stroke and bleeding in 182 678 patients with atrial fibrillation: the Swedish Atrial Fibrillation cohort study. Eur Heart J. 2012 Jun;33(12):1500-10. doi: 10.1093/eurheartj/ehr488. Epub 2012 Jan 13.

Reference Type BACKGROUND
PMID: 22246443 (View on PubMed)

Fang MC, Go AS, Chang Y, Borowsky L, Pomernacki NK, Singer DE; ATRIA Study Group. Comparison of risk stratification schemes to predict thromboembolism in people with nonvalvular atrial fibrillation. J Am Coll Cardiol. 2008 Feb 26;51(8):810-5. doi: 10.1016/j.jacc.2007.09.065.

Reference Type BACKGROUND
PMID: 18294564 (View on PubMed)

Keogh C, Wallace E, Dillon C, Dimitrov BD, Fahey T. Validation of the CHADS2 clinical prediction rule to predict ischaemic stroke. A systematic review and meta-analysis. Thromb Haemost. 2011 Sep;106(3):528-38. doi: 10.1160/TH11-02-0061. Epub 2011 Jul 28.

Reference Type BACKGROUND
PMID: 21800003 (View on PubMed)

Marrouche NF, Wilber D, Hindricks G, Jais P, Akoum N, Marchlinski F, Kholmovski E, Burgon N, Hu N, Mont L, Deneke T, Duytschaever M, Neumann T, Mansour M, Mahnkopf C, Herweg B, Daoud E, Wissner E, Bansmann P, Brachmann J. Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the DECAAF study. JAMA. 2014 Feb 5;311(5):498-506. doi: 10.1001/jama.2014.3.

Reference Type BACKGROUND
PMID: 24496537 (View on PubMed)

Zghaib T, Nazarian S. New Insights Into the Use of Cardiac Magnetic Resonance Imaging to Guide Decision Making in Atrial Fibrillation Management. Can J Cardiol. 2018 Nov;34(11):1461-1470. doi: 10.1016/j.cjca.2018.07.007. Epub 2018 Jul 12.

Reference Type BACKGROUND
PMID: 30297256 (View on PubMed)

Bisbal F, Baranchuk A, Braunwald E, Bayes de Luna A, Bayes-Genis A. Atrial Failure as a Clinical Entity: JACC Review Topic of the Week. J Am Coll Cardiol. 2020 Jan 21;75(2):222-232. doi: 10.1016/j.jacc.2019.11.013.

Reference Type BACKGROUND
PMID: 31948652 (View on PubMed)

King JB, Azadani PN, Suksaranjit P, Bress AP, Witt DM, Han FT, Chelu MG, Silver MA, Biskupiak J, Wilson BD, Morris AK, Kholmovski EG, Marrouche N. Left Atrial Fibrosis and Risk of Cerebrovascular and Cardiovascular Events in Patients With Atrial Fibrillation. J Am Coll Cardiol. 2017 Sep 12;70(11):1311-1321. doi: 10.1016/j.jacc.2017.07.758.

Reference Type BACKGROUND
PMID: 28882227 (View on PubMed)

Daccarett M, Badger TJ, Akoum N, Burgon NS, Mahnkopf C, Vergara G, Kholmovski E, McGann CJ, Parker D, Brachmann J, Macleod RS, Marrouche NF. Association of left atrial fibrosis detected by delayed-enhancement magnetic resonance imaging and the risk of stroke in patients with atrial fibrillation. J Am Coll Cardiol. 2011 Feb 15;57(7):831-8. doi: 10.1016/j.jacc.2010.09.049.

Reference Type BACKGROUND
PMID: 21310320 (View on PubMed)

Siebermair J, Suksaranjit P, McGann CJ, Peterson KA, Kheirkhahan M, Baher AA, Damal K, Wakili R, Marrouche NF, Wilson BD. Atrial fibrosis in non-atrial fibrillation individuals and prediction of atrial fibrillation by use of late gadolinium enhancement magnetic resonance imaging. J Cardiovasc Electrophysiol. 2019 Apr;30(4):550-556. doi: 10.1111/jce.13846. Epub 2019 Jan 24.

Reference Type BACKGROUND
PMID: 30661270 (View on PubMed)

Habibi M, Zareian M, Ambale Venkatesh B, Samiei S, Imai M, Wu C, Launer LJ, Shea S, Gottesman RF, Heckbert SR, Bluemke DA, Lima JAC. Left Atrial Mechanical Function and Incident Ischemic Cerebrovascular Events Independent of AF: Insights From the MESA Study. JACC Cardiovasc Imaging. 2019 Dec;12(12):2417-2427. doi: 10.1016/j.jcmg.2019.02.021. Epub 2019 Apr 17.

Reference Type BACKGROUND
PMID: 31005519 (View on PubMed)

Inoue YY, Alissa A, Khurram IM, Fukumoto K, Habibi M, Venkatesh BA, Zimmerman SL, Nazarian S, Berger RD, Calkins H, Lima JA, Ashikaga H. Quantitative tissue-tracking cardiac magnetic resonance (CMR) of left atrial deformation and the risk of stroke in patients with atrial fibrillation. J Am Heart Assoc. 2015 Apr 27;4(4):e001844. doi: 10.1161/JAHA.115.001844.

Reference Type BACKGROUND
PMID: 25917441 (View on PubMed)

Kamel H, Okin PM, Merkler AE, Navi BB, Campion TR, Devereux RB, Diaz I, Weinsaft JW, Kim J. Relationship between left atrial volume and ischemic stroke subtype. Ann Clin Transl Neurol. 2019 Aug;6(8):1480-1486. doi: 10.1002/acn3.50841. Epub 2019 Jul 26.

Reference Type BACKGROUND
PMID: 31402612 (View on PubMed)

Al-Saady NM, Obel OA, Camm AJ. Left atrial appendage: structure, function, and role in thromboembolism. Heart. 1999 Nov;82(5):547-54. doi: 10.1136/hrt.82.5.547.

Reference Type BACKGROUND
PMID: 10525506 (View on PubMed)

Jeong WK, Choi JH, Son JP, Lee S, Lee MJ, Choe YH, Bang OY. Volume and morphology of left atrial appendage as determinants of stroke subtype in patients with atrial fibrillation. Heart Rhythm. 2016 Apr;13(4):820-7. doi: 10.1016/j.hrthm.2015.12.026. Epub 2015 Dec 18.

Reference Type BACKGROUND
PMID: 26707792 (View on PubMed)

Yaghi S, Song C, Gray WA, Furie KL, Elkind MS, Kamel H. Left Atrial Appendage Function and Stroke Risk. Stroke. 2015 Dec;46(12):3554-9. doi: 10.1161/STROKEAHA.115.011273. Epub 2015 Oct 27. No abstract available.

Reference Type BACKGROUND
PMID: 26508750 (View on PubMed)

Gaita F, Corsinovi L, Anselmino M, Raimondo C, Pianelli M, Toso E, Bergamasco L, Boffano C, Valentini MC, Cesarani F, Scaglione M. Prevalence of silent cerebral ischemia in paroxysmal and persistent atrial fibrillation and correlation with cognitive function. J Am Coll Cardiol. 2013 Nov 19;62(21):1990-1997. doi: 10.1016/j.jacc.2013.05.074. Epub 2013 Jul 10.

Reference Type BACKGROUND
PMID: 23850917 (View on PubMed)

Bokura H, Kobayashi S, Yamaguchi S, Iijima K, Nagai A, Toyoda G, Oguro H, Takahashi K. Silent brain infarction and subcortical white matter lesions increase the risk of stroke and mortality: a prospective cohort study. J Stroke Cerebrovasc Dis. 2006 Mar-Apr;15(2):57-63. doi: 10.1016/j.jstrokecerebrovasdis.2005.11.001.

Reference Type BACKGROUND
PMID: 17904049 (View on PubMed)

Debette S, Beiser A, DeCarli C, Au R, Himali JJ, Kelly-Hayes M, Romero JR, Kase CS, Wolf PA, Seshadri S. Association of MRI markers of vascular brain injury with incident stroke, mild cognitive impairment, dementia, and mortality: the Framingham Offspring Study. Stroke. 2010 Apr;41(4):600-6. doi: 10.1161/STROKEAHA.109.570044. Epub 2010 Feb 18.

Reference Type BACKGROUND
PMID: 20167919 (View on PubMed)

Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, Launer LJ, Laurent S, Lopez OL, Nyenhuis D, Petersen RC, Schneider JA, Tzourio C, Arnett DK, Bennett DA, Chui HC, Higashida RT, Lindquist R, Nilsson PM, Roman GC, Sellke FW, Seshadri S; American Heart Association Stroke Council, Council on Epidemiology and Prevention, Council on Cardiovascular Nursing, Council on Cardiovascular Radiology and Intervention, and Council on Cardiovascular Surgery and Anesthesia. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke. 2011 Sep;42(9):2672-713. doi: 10.1161/STR.0b013e3182299496. Epub 2011 Jul 21.

Reference Type BACKGROUND
PMID: 21778438 (View on PubMed)

Cogswell RJ, Norby FL, Gottesman RF, Chen LY, Solomon S, Shah A, Alonso A. High prevalence of subclinical cerebral infarction in patients with heart failure with preserved ejection fraction. Eur J Heart Fail. 2017 Oct;19(10):1303-1309. doi: 10.1002/ejhf.812. Epub 2017 Jul 24.

Reference Type BACKGROUND
PMID: 28738140 (View on PubMed)

Chubb H, Karim R, Roujol S, Nunez-Garcia M, Williams SE, Whitaker J, Harrison J, Butakoff C, Camara O, Chiribiri A, Schaeffter T, Wright M, O'Neill M, Razavi R. The reproducibility of late gadolinium enhancement cardiovascular magnetic resonance imaging of post-ablation atrial scar: a cross-over study. J Cardiovasc Magn Reson. 2018 Mar 19;20(1):21. doi: 10.1186/s12968-018-0438-y.

Reference Type BACKGROUND
PMID: 29554919 (View on PubMed)

Margulescu AD, Nunez-Garcia M, Alarcon F, Benito EM, Enomoto N, Cozzari J, Chipa F, Fernandez H, Borras R, Guasch E, Butakoff C, Tolosana JM, Arbelo E, Camara O, Mont L. Reproducibility and accuracy of late gadolinium enhancement cardiac magnetic resonance measurements for the detection of left atrial fibrosis in patients undergoing atrial fibrillation ablation procedures. Europace. 2019 May 1;21(5):724-731. doi: 10.1093/europace/euy314.

Reference Type BACKGROUND
PMID: 30649273 (View on PubMed)

Bisbal F, Gomez-Pulido F, Cabanas-Grandio P, Akoum N, Calvo M, Andreu D, Prat-Gonzalez S, Perea RJ, Villuendas R, Berruezo A, Sitges M, Bayes-Genis A, Brugada J, Marrouche NF, Mont L. Left Atrial Geometry Improves Risk Prediction of Thromboembolic Events in Patients With Atrial Fibrillation. J Cardiovasc Electrophysiol. 2016 Jul;27(7):804-10. doi: 10.1111/jce.12978. Epub 2016 May 13.

Reference Type BACKGROUND
PMID: 27027899 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

2020-2151

Identifier Type: -

Identifier Source: org_study_id