The Effect Of Transcutaneous Auricular Vagus Nerve Stimulation On Sports Performance And Physiological Parameters
NCT ID: NCT04768738
Last Updated: 2021-02-24
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
46 participants
INTERVENTIONAL
2020-02-01
2020-11-01
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
MATERIAL AND METHOD: 46 healthy young individuals aged 19.2(±1.5) years participated in the study. The participants were randomly divided into 3 groups as Above Threshold Group (n:15; 10 females, 5 males), Under Threshold Group (n:15; 10 females, 5 males) and Control Group (no stimulation) (n:16; 11 females, 5 males) according to the sensation of electrical current on ears. The participants were evaluated 3 times; before the application, after the first and second bicycle exercises. Numerical pain scale (NPS), pulse rate, blood pressure, respiratory rate, and distance travelled during exercise for sportive performance were recorded in kilometers as the evaluation method. The stimulation was done during the first bicycle exercise with 5 minutes of duration. The Kruskal-wallis, mann-whitney u test were used for the quantitative independent data obtained. In the analysis of qualitative independent data, chi-squared test was used.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
The Effect of Vagus Nerve Stimulation on Cycling Ergometry and Recovery
NCT05778058
The Effect of Vagus Nerve Stimulation on Sportive Performance.
NCT05436821
Effects of Transcutaneous Vagus Nerve Stimulation on Recovery
NCT06566118
The Effect of Vagus Nerve Stimulation on Lower Limb Muscle Strength and Balance in Nonelite Athletes
NCT06985043
Comparison of the Effectiveness of Exercise and Vagus Therapy in Healthy Individuals
NCT04832347
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
The study was double-blind randomized. Participants in the whole group were asked to perform bicycle exercise with maximum performance under 50 watts for 5 minutes. In all groups Vagustim device was used for stimulation. In the above threshold group, biphasic current was applied as follows; frequency 10 Hz, in Modulation mode (Modulation mode is a combination of pulse rate and pulse width modulation. The pulse rate and width are automatically varied in a cycle pattern. The pulse width is reduced by 50% from its original setting in 0.5 second, then the pulse rate is reduced by 50% from its original setting in 0.5 second. Total cycle time is 1 second.), the pulse width was 300 μs. The current intensity was kept constant where the participant felt the current comfortably and applied for 5 minutes. VNS was applied bilaterally to transmit current from the tragus and concha parts of the ear. After the first bicycle exercise, the participants were re-evaluated. In the second bicycle exercise, it was asked to perform for 5 minutes under the same load without any application. The study was evaluated for the third time and the study was completed.
In the subthreshold group, the parameters were the same but the current was reduced to where the participant did not feel the current after the threshold value was reached and again applied for 5 minutes. It was re-evaluated after the first bicycle exercise. In the second bicycle exercise, he was asked to perform bicycle exercise with maximum performance for 5 minutes under the same load without any application. The study was evaluated for the third time and the study was completed.
In the control group, bicycle exercise was performed under the same load with the current-free headset produced for sham applications for 5 minutes. Participants were shown that the device was working, but no current was given. It was re-evaluated after the first bicycle exercise. In the second bicycle exercise, the device was removed and asked to perform bicycle exercise with maximum performance for 5 minutes under the same load. The study was evaluated for the third time and the study was completed.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
BASIC_SCIENCE
DOUBLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Above Threshold Group
In the above threshold group, biphasic current was applied as follows; frequency 10 Hz, in Modulation mode (Modulation mode is a combination of pulse rate and pulse width modulation. The pulse rate and width are automatically varied in a cycle pattern. The pulse width is reduced by 50% from its original setting in 0.5 second, then the pulse rate is reduced by 50% from its original setting in 0.5 second. Total cycle time is 1 second.), the pulse width was 300 μs. The current intensity was kept constant where the participant felt the current comfortably and applied for 5 minutes.
Auricular Vagus Nerve Stimulation Level Of Above Threshold
Biphasic current was applied as follows; frequency 10 Hz, in Modulation mode (Modulation mode is a combination of pulse rate and pulse width modulation. The pulse rate and width are automatically varied in a cycle pattern. The pulse width is reduced by 50% from its original setting in 0.5 second, then the pulse rate is reduced by 50% from its original setting in 0.5 second. Total cycle time is 1 second.), the pulse width was 300 μs. The current intensity was kept constant where the participant felt the current comfortably and applied for 5 minutes.
5 Minutes Bicycle Exercise
Participants in this group were asked to perform bicycle exercise with maximum performance under 50 watts for 5 minutes.
Subthreshold Group
In the subthreshold group, biphasic current was applied as follows; frequency 10 Hz, in Modulation mode (Modulation mode is a combination of pulse rate and pulse width modulation. The pulse rate and width are automatically varied in a cycle pattern. The pulse width is reduced by 50% from its original setting in 0.5 second, then the pulse rate is reduced by 50% from its original setting in 0.5 second. Total cycle time is 1 second.), the pulse width was 300 μs. The parameters were the same with Above Threshold Group but the current was reduced to where the participant did not feel the current after the threshold value was reached and again applied for 5 minutes.
Auricular Vagus Nerve Stimulation Level Of Subthreshold
biphasic current was applied as follows; frequency 10 Hz, in Modulation mode (Modulation mode is a combination of pulse rate and pulse width modulation. The pulse rate and width are automatically varied in a cycle pattern. The pulse width is reduced by 50% from its original setting in 0.5 second, then the pulse rate is reduced by 50% from its original setting in 0.5 second. Total cycle time is 1 second.), the pulse width was 300 μs. The parameters were the same with Above Threshold Group but the current was reduced to where the participant did not feel the current after the threshold value was reached and again applied for 5 minutes.
5 Minutes Bicycle Exercise
Participants in this group were asked to perform bicycle exercise with maximum performance under 50 watts for 5 minutes.
Control Group
In the control group, bicycle exercise was performed under the same load with the current-free headset produced for sham applications for 5 minutes. Participants were shown that the device was working, but no current was given.
Auricular Vagus Nerve Stimulation Sham Method
Participants were shown that the device was working, but no current was given.
5 Minutes Bicycle Exercise
Participants in this group were asked to perform bicycle exercise with maximum performance under 50 watts for 5 minutes.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Auricular Vagus Nerve Stimulation Level Of Above Threshold
Biphasic current was applied as follows; frequency 10 Hz, in Modulation mode (Modulation mode is a combination of pulse rate and pulse width modulation. The pulse rate and width are automatically varied in a cycle pattern. The pulse width is reduced by 50% from its original setting in 0.5 second, then the pulse rate is reduced by 50% from its original setting in 0.5 second. Total cycle time is 1 second.), the pulse width was 300 μs. The current intensity was kept constant where the participant felt the current comfortably and applied for 5 minutes.
Auricular Vagus Nerve Stimulation Level Of Subthreshold
biphasic current was applied as follows; frequency 10 Hz, in Modulation mode (Modulation mode is a combination of pulse rate and pulse width modulation. The pulse rate and width are automatically varied in a cycle pattern. The pulse width is reduced by 50% from its original setting in 0.5 second, then the pulse rate is reduced by 50% from its original setting in 0.5 second. Total cycle time is 1 second.), the pulse width was 300 μs. The parameters were the same with Above Threshold Group but the current was reduced to where the participant did not feel the current after the threshold value was reached and again applied for 5 minutes.
Auricular Vagus Nerve Stimulation Sham Method
Participants were shown that the device was working, but no current was given.
5 Minutes Bicycle Exercise
Participants in this group were asked to perform bicycle exercise with maximum performance under 50 watts for 5 minutes.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Being healthy
Exclusion Criteria
* any drug usage
18 Years
27 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Sinop University
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
SEFA HAKTAN HATIK
PT, MSc, PhD(c)
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Sefa Haktan Hatık
Sinop, Turkeli, Turkey (Türkiye)
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Nur Gökçe, E , Pınar Cengi̇z, Z , Erbaş, O . (2018). Uzun ömrün sırrı: Vagus siniri . İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi , 4 (3) , 154-165 . Retrieved from https://dergipark.org.tr/tr/pub/ibufntd/issue/39718/470405
Tracey, K.J., Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation. 2003, Google Patents
Hong GS, Zillekens A, Schneiker B, Pantelis D, de Jonge WJ, Schaefer N, Kalff JC, Wehner S. Non-invasive transcutaneous auricular vagus nerve stimulation prevents postoperative ileus and endotoxemia in mice. Neurogastroenterol Motil. 2019 Mar;31(3):e13501. doi: 10.1111/nmo.13501. Epub 2018 Nov 8.
Liu JJ, Huang N, Lu Y, Zhao M, Yu XJ, Yang Y, Yang YH, Zang WJ. Improving vagal activity ameliorates cardiac fibrosis induced by angiotensin II: in vivo and in vitro. Sci Rep. 2015 Nov 24;5:17108. doi: 10.1038/srep17108.
Lataro RM, Silva CA, Fazan R Jr, Rossi MA, Prado CM, Godinho RO, Salgado HC. Increase in parasympathetic tone by pyridostigmine prevents ventricular dysfunction during the onset of heart failure. Am J Physiol Regul Integr Comp Physiol. 2013 Oct 15;305(8):R908-16. doi: 10.1152/ajpregu.00102.2013. Epub 2013 Aug 15.
Dalli J, Colas RA, Arnardottir H, Serhan CN. Vagal Regulation of Group 3 Innate Lymphoid Cells and the Immunoresolvent PCTR1 Controls Infection Resolution. Immunity. 2017 Jan 17;46(1):92-105. doi: 10.1016/j.immuni.2016.12.009. Epub 2017 Jan 5.
Penry JK, Dean JC. Prevention of intractable partial seizures by intermittent vagal stimulation in humans: preliminary results. Epilepsia. 1990;31 Suppl 2:S40-3. doi: 10.1111/j.1528-1157.1990.tb05848.x.
Ben-Menachem E, Revesz D, Simon BJ, Silberstein S. Surgically implanted and non-invasive vagus nerve stimulation: a review of efficacy, safety and tolerability. Eur J Neurol. 2015 Sep;22(9):1260-8. doi: 10.1111/ene.12629. Epub 2015 Jan 23.
Yuan H, Silberstein SD. Vagus Nerve and Vagus Nerve Stimulation, a Comprehensive Review: Part II. Headache. 2016 Feb;56(2):259-66. doi: 10.1111/head.12650. Epub 2015 Sep 18.
Straube A, Ellrich J, Eren O, Blum B, Ruscheweyh R. Treatment of chronic migraine with transcutaneous stimulation of the auricular branch of the vagal nerve (auricular t-VNS): a randomized, monocentric clinical trial. J Headache Pain. 2015;16:543. doi: 10.1186/s10194-015-0543-3. Epub 2015 Jul 9.
Silberstein SD, Calhoun AH, Lipton RB, Grosberg BM, Cady RK, Dorlas S, Simmons KA, Mullin C, Liebler EJ, Goadsby PJ, Saper JR; EVENT Study Group. Chronic migraine headache prevention with noninvasive vagus nerve stimulation: The EVENT study. Neurology. 2016 Aug 2;87(5):529-38. doi: 10.1212/WNL.0000000000002918. Epub 2016 Jul 13.
Tassorelli C, Grazzi L, de Tommaso M, Pierangeli G, Martelletti P, Rainero I, Dorlas S, Geppetti P, Ambrosini A, Sarchielli P, Liebler E, Barbanti P; PRESTO Study Group. Noninvasive vagus nerve stimulation as acute therapy for migraine: The randomized PRESTO study. Neurology. 2018 Jul 24;91(4):e364-e373. doi: 10.1212/WNL.0000000000005857. Epub 2018 Jun 15.
Beh SC, Friedman DI. Acute vestibular migraine treatment with noninvasive vagus nerve stimulation. Neurology. 2019 Oct 29;93(18):e1715-e1719. doi: 10.1212/WNL.0000000000008388. Epub 2019 Sep 25.
Busch V, Zeman F, Heckel A, Menne F, Ellrich J, Eichhammer P. The effect of transcutaneous vagus nerve stimulation on pain perception--an experimental study. Brain Stimul. 2013 Mar;6(2):202-9. doi: 10.1016/j.brs.2012.04.006. Epub 2012 May 7.
Moller M, Mehnert J, Schroeder CF, May A. Noninvasive vagus nerve stimulation and the trigeminal autonomic reflex: An fMRI study. Neurology. 2020 Mar 10;94(10):e1085-e1093. doi: 10.1212/WNL.0000000000008865. Epub 2020 Feb 6.
Colzato LS, Ritter SM, Steenbergen L. Transcutaneous vagus nerve stimulation (tVNS) enhances divergent thinking. Neuropsychologia. 2018 Mar;111:72-76. doi: 10.1016/j.neuropsychologia.2018.01.003. Epub 2018 Jan 8.
Oshinsky ML, Murphy AL, Hekierski H Jr, Cooper M, Simon BJ. Noninvasive vagus nerve stimulation as treatment for trigeminal allodynia. Pain. 2014 May;155(5):1037-1042. doi: 10.1016/j.pain.2014.02.009. Epub 2014 Feb 14.
Antonino D, Teixeira AL, Maia-Lopes PM, Souza MC, Sabino-Carvalho JL, Murray AR, Deuchars J, Vianna LC. Non-invasive vagus nerve stimulation acutely improves spontaneous cardiac baroreflex sensitivity in healthy young men: A randomized placebo-controlled trial. Brain Stimul. 2017 Sep-Oct;10(5):875-881. doi: 10.1016/j.brs.2017.05.006. Epub 2017 May 19.
Sabino-Carvalho, J.L., et al., Non-invasive Vagus Nerve Stimulation Acutely Improves Blood Pressure Control in a Placebo Controlled Study. The FASEB Journal, 2017. 31(1_supplement): p. 848.8-848.8.
Annoni EM, Xie X, Lee SW, Libbus I, KenKnight BH, Osborn JW, Tolkacheva EG. Intermittent electrical stimulation of the right cervical vagus nerve in salt-sensitive hypertensive rats: effects on blood pressure, arrhythmias, and ventricular electrophysiology. Physiol Rep. 2015 Aug;3(8):e12476. doi: 10.14814/phy2.12476.
Tiedt N, Religa A. Vagal control of coronary blood flow in dogs. Basic Res Cardiol. 1979 May-Jun;74(3):266-76. doi: 10.1007/BF01907744.
Chen M, Yu L, Liu Q, Jiang H, Zhou S. Vagus nerve stimulation: A spear role or a shield role in atrial fibrillation? Int J Cardiol. 2015 Nov 1;198:115-6. doi: 10.1016/j.ijcard.2015.06.171. Epub 2015 Jul 5. No abstract available.
Lee SW, Li Q, Libbus I, Xie X, KenKnight BH, Garry MG, Tolkacheva EG. Chronic cyclic vagus nerve stimulation has beneficial electrophysiological effects on healthy hearts in the absence of autonomic imbalance. Physiol Rep. 2016 May;4(9):e12786. doi: 10.14814/phy2.12786.
Annoni EM, Van Helden D, Guo Y, Levac B, Libbus I, KenKnight BH, Osborn JW, Tolkacheva EG. Chronic Low-Level Vagus Nerve Stimulation Improves Long-Term Survival in Salt-Sensitive Hypertensive Rats. Front Physiol. 2019 Jan 31;10:25. doi: 10.3389/fphys.2019.00025. eCollection 2019.
Clancy JA, Mary DA, Witte KK, Greenwood JP, Deuchars SA, Deuchars J. Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain Stimul. 2014 Nov-Dec;7(6):871-7. doi: 10.1016/j.brs.2014.07.031. Epub 2014 Jul 16.
Yoo PB, Liu H, Hincapie JG, Ruble SB, Hamann JJ, Grill WM. Modulation of heart rate by temporally patterned vagus nerve stimulation in the anesthetized dog. Physiol Rep. 2016 Feb;4(2):e12689. doi: 10.14814/phy2.12689.
Xie X, Lee SW, Johnson C, Ippolito J, KenKnight BH, Tolkacheva EG. Intermittent vagal nerve stimulation alters the electrophysiological properties of atrium in the myocardial infarction rat model. Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:1575-8. doi: 10.1109/EMBC.2014.6943904.
Li M, Zheng C, Sato T, Kawada T, Sugimachi M, Sunagawa K. Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation. 2004 Jan 6;109(1):120-4. doi: 10.1161/01.CIR.0000105721.71640.DA. Epub 2003 Dec 8.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
VNS001
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.