Pharmacogenomic-Guided Supportive Care in Hematopoietic Cell Transplantation
NCT ID: NCT04727827
Last Updated: 2023-08-03
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
110 participants
INTERVENTIONAL
2021-02-01
2023-06-09
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Further follow up evaluations have evaluated the impact of focused palliative care/symptom management on QOL metrics - inclusive of Edmonton Symptom Assessment surveys (ESAS). In other malignant settings, i.e. solid tumor, ESAS has been noted as an effective measure of symptoms control and the utilization of this assessment is linked to positive outcomes. The American Society of Clinical Oncology (ASCO) has designated QOL as the second most relevant metric for post-transplant patient care behind survival, making the optimization of supportive care pharmacotherapy a clinically relevant subject to investigate. Pharmacogenetics (PGx) uses an individual's genetic factors, such as single nucleotide polymorphisms (SNPs), to personalize therapy or dose selection. SNPs encode drug-metabolizing enzymes, transporters, and targets that can significantly impact drug efficacy and toxicity. With the growing complexity of both antineoplastics and supportive care, oncologists have less time to manage each subject's myriad of supportive care concerns by trial and error. Suboptimal management of symptoms compromises potential benefits from cancer therapy, disrupts clinic workflow, increases emergency room visits, and affects both patient satisfaction and reimbursement. Genetic variation is well documented across the human genome and affects a subject's response to medications regarding efficacy and toxicity. The genome is quickly becoming a pragmatic tool that can assist oncologists and other providers in optimizing supportive care for subjects with cancer.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Donor Stem Cell Transplant in Treating Patients With Hematologic Cancer or Other Diseases
NCT00453206
Stem Cell Transplant in Treating Patients With Hematological Cancer or Other Disorders
NCT00740467
Factors Affecting Post-transplant Cyclophosphamide (PTCy) Efficacy
NCT03555851
Donor Stem Cell Transplant in Treating Patients With Hematologic Cancer
NCT00054327
Donor Peripheral Blood Stem Cell Transplant in Treating Patients With Hematologic Malignancies
NCT01028716
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
SUPPORTIVE_CARE
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Pharmacogenomic Testing
A pharmacogenomic (PGx) panel will be performed to test for genetic variations in genes related to drug response.
Pharmacogenomic-guided supportive care
Patients undergoing hematopoietic stem cell transplantation will be genotyped and supportive care therapies tailored to identified drug-gene pairs and guideline recommendations
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Pharmacogenomic-guided supportive care
Patients undergoing hematopoietic stem cell transplantation will be genotyped and supportive care therapies tailored to identified drug-gene pairs and guideline recommendations
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Age ≥ 18 years at the time of consent
* Scheduled HCT (allogeneic and autologous, any conditioning regimen) treatment for any malignant or non-malignant indications (i.e. aplastic anemia)
* Ability to read and understand English or Spanish
* Able to provide a buccal sample for DNA extraction and genotyping
Exclusion Criteria
18 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Wake Forest University Health Sciences
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Justin R Arnall, PharmD
Role: PRINCIPAL_INVESTIGATOR
Wake Forest University Health Sciences
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Levine Cancer Institute
Charlotte, North Carolina, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Sureda A, Bader P, Cesaro S, Dreger P, Duarte RF, Dufour C, Falkenburg JH, Farge-Bancel D, Gennery A, Kroger N, Lanza F, Marsh JC, Nagler A, Peters C, Velardi A, Mohty M, Madrigal A. Indications for allo- and auto-SCT for haematological diseases, solid tumours and immune disorders: current practice in Europe, 2015. Bone Marrow Transplant. 2015 Aug;50(8):1037-56. doi: 10.1038/bmt.2015.6. Epub 2015 Mar 23.
El-Jawahri A, LeBlanc T, VanDusen H, Traeger L, Greer JA, Pirl WF, Jackson VA, Telles J, Rhodes A, Spitzer TR, McAfee S, Chen YA, Lee SS, Temel JS. Effect of Inpatient Palliative Care on Quality of Life 2 Weeks After Hematopoietic Stem Cell Transplantation: A Randomized Clinical Trial. JAMA. 2016 Nov 22;316(20):2094-2103. doi: 10.1001/jama.2016.16786.
McCabe MS, Bhatia S, Oeffinger KC, Reaman GH, Tyne C, Wollins DS, Hudson MM. American Society of Clinical Oncology statement: achieving high-quality cancer survivorship care. J Clin Oncol. 2013 Feb 10;31(5):631-40. doi: 10.1200/JCO.2012.46.6854. Epub 2013 Jan 7. No abstract available.
Evans WE, McLeod HL. Pharmacogenomics--drug disposition, drug targets, and side effects. N Engl J Med. 2003 Feb 6;348(6):538-49. doi: 10.1056/NEJMra020526. No abstract available.
Patel JN, Wiebe LA, Dunnenberger HM, McLeod HL. Value of Supportive Care Pharmacogenomics in Oncology Practice. Oncologist. 2018 Aug;23(8):956-964. doi: 10.1634/theoncologist.2017-0599. Epub 2018 Apr 5.
Owusu Obeng A, Hamadeh I, Smith M. Review of Opioid Pharmacogenetics and Considerations for Pain Management. Pharmacotherapy. 2017 Sep;37(9):1105-1121. doi: 10.1002/phar.1986. Epub 2017 Sep 6.
Ciszkowski C, Madadi P, Phillips MS, Lauwers AE, Koren G. Codeine, ultrarapid-metabolism genotype, and postoperative death. N Engl J Med. 2009 Aug 20;361(8):827-8. doi: 10.1056/NEJMc0904266. No abstract available.
Crews KR, Gaedigk A, Dunnenberger HM, Leeder JS, Klein TE, Caudle KE, Haidar CE, Shen DD, Callaghan JT, Sadhasivam S, Prows CA, Kharasch ED, Skaar TC; Clinical Pharmacogenetics Implementation Consortium. Clinical Pharmacogenetics Implementation Consortium guidelines for cytochrome P450 2D6 genotype and codeine therapy: 2014 update. Clin Pharmacol Ther. 2014 Apr;95(4):376-82. doi: 10.1038/clpt.2013.254. Epub 2014 Jan 23.
Hicks JK, Bishop JR, Sangkuhl K, Muller DJ, Ji Y, Leckband SG, Leeder JS, Graham RL, Chiulli DL, LLerena A, Skaar TC, Scott SA, Stingl JC, Klein TE, Caudle KE, Gaedigk A; Clinical Pharmacogenetics Implementation Consortium. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Selective Serotonin Reuptake Inhibitors. Clin Pharmacol Ther. 2015 Aug;98(2):127-34. doi: 10.1002/cpt.147. Epub 2015 Jun 29.
Altar CA, Carhart J, Allen JD, Hall-Flavin D, Winner J, Dechairo B. Clinical Utility of Combinatorial Pharmacogenomics-Guided Antidepressant Therapy: Evidence from Three Clinical Studies. Mol Neuropsychiatry. 2015 Oct;1(3):145-55. doi: 10.1159/000430915. Epub 2015 Jul 31.
Perez V, Salavert A, Espadaler J, Tuson M, Saiz-Ruiz J, Saez-Navarro C, Bobes J, Baca-Garcia E, Vieta E, Olivares JM, Rodriguez-Jimenez R, Villagran JM, Gascon J, Canete-Crespillo J, Sole M, Saiz PA, Ibanez A, de Diego-Adelino J; AB-GEN Collaborative Group; Menchon JM. Efficacy of prospective pharmacogenetic testing in the treatment of major depressive disorder: results of a randomized, double-blind clinical trial. BMC Psychiatry. 2017 Jul 14;17(1):250. doi: 10.1186/s12888-017-1412-1.
Winner JG, Carhart JM, Altar CA, Allen JD, Dechairo BM. A prospective, randomized, double-blind study assessing the clinical impact of integrated pharmacogenomic testing for major depressive disorder. Discov Med. 2013 Nov;16(89):219-27.
Nassan M, Nicholson WT, Elliott MA, Rohrer Vitek CR, Black JL, Frye MA. Pharmacokinetic Pharmacogenetic Prescribing Guidelines for Antidepressants: A Template for Psychiatric Precision Medicine. Mayo Clin Proc. 2016 Jul;91(7):897-907. doi: 10.1016/j.mayocp.2016.02.023. Epub 2016 Jun 21.
Bousman CA, Forbes M, Jayaram M, Eyre H, Reynolds CF, Berk M, Hopwood M, Ng C. Antidepressant prescribing in the precision medicine era: a prescriber's primer on pharmacogenetic tools. BMC Psychiatry. 2017 Feb 8;17(1):60. doi: 10.1186/s12888-017-1230-5.
Trammel M, Roederer M, Patel J, McLeod H. Does pharmacogenomics account for variability in control of acute chemotherapy-induced nausea and vomiting with 5-hydroxytryptamine type 3 receptor antagonists? Curr Oncol Rep. 2013 Jun;15(3):276-85. doi: 10.1007/s11912-013-0312-x.
Chen JS, Li LS, Cheng DR, Ji SM, Sun QQ, Cheng Z, Wen JQ, Sha GZ, Liu ZH. Effect of CYP3A5 genotype on renal allograft recipients treated with tacrolimus. Transplant Proc. 2009 Jun;41(5):1557-61. doi: 10.1016/j.transproceed.2009.01.097.
Quteineh L, Verstuyft C, Furlan V, Durrbach A, Letierce A, Ferlicot S, Taburet AM, Charpentier B, Becquemont L. Influence of CYP3A5 genetic polymorphism on tacrolimus daily dose requirements and acute rejection in renal graft recipients. Basic Clin Pharmacol Toxicol. 2008 Dec;103(6):546-52. doi: 10.1111/j.1742-7843.2008.00327.x.
Tang HL, Xie HG, Yao Y, Hu YF. Lower tacrolimus daily dose requirements and acute rejection rates in the CYP3A5 nonexpressers than expressers. Pharmacogenet Genomics. 2011 Nov;21(11):713-20. doi: 10.1097/FPC.0b013e32834a48ca.
Abidi MZ, D'Souza A, Kuppalli K, Ledeboer N, Hari P. CYP2C19*17 genetic polymorphism--an uncommon cause of voriconazole treatment failure. Diagn Microbiol Infect Dis. 2015 Sep;83(1):46-8. doi: 10.1016/j.diagmicrobio.2015.05.002. Epub 2015 May 7.
Bennis Y, Bodeau S, Bouquie R, Deslandes G, Verstuyft C, Gruson B, Andrejak M, Lemaire-Hurtel AS, Chouaki T. High metabolic N-oxidation of voriconazole in a patient with refractory aspergillosis and CYP2C19*17/*17 genotype. Br J Clin Pharmacol. 2015 Oct;80(4):782-4. doi: 10.1111/bcp.12713. Epub 2015 Aug 24. No abstract available.
Cendejas-Bueno E, Borobia AM, Gomez-Lopez A, Escosa-Garcia L, Rio-Garcia M, Plaza D, Garcia-Rodriguez J, Carcas-Sansuan A. Invasive aspergillosis in a paediatric allogeneic stem cell transplantation recipient owing to a susceptible Aspergillus fumigatus: Treatment failure with high doses of voriconazole and influence of CYP2C19 polymorphisms. Int J Antimicrob Agents. 2016 May;47(5):410-1. doi: 10.1016/j.ijantimicag.2016.02.002. Epub 2016 Feb 27. No abstract available.
Moriyama B, Jarosinski PF, Figg WD, Henning SA, Danner RL, Penzak SR, Wayne AS, Walsh TJ. Pharmacokinetics of intravenous voriconazole in obese patients: implications of CYP2C19 homozygous poor metabolizer genotype. Pharmacotherapy. 2013 Mar;33(3):e19-22. doi: 10.1002/phar.1192. Epub 2013 Feb 11.
Moriyama B, Falade-Nwulia O, Leung J, Penzak SR, JJingo C, Huang X, Henning SA, Wilson WH, Walsh TJ. Prolonged half-life of voriconazole in a CYP2C19 homozygous poor metabolizer receiving vincristine chemotherapy: avoiding a serious adverse drug interaction. Mycoses. 2011 Nov;54(6):e877-9. doi: 10.1111/j.1439-0507.2011.02016.x. Epub 2011 May 25.
Andersen RL, Johnson DJ, Patel JN. Personalizing supportive care in oncology patients using pharmacogenetic-driven treatment pathways. Pharmacogenomics. 2016 Mar;17(4):417-34. doi: 10.2217/pgs.15.178. Epub 2016 Feb 12.
Patel JN, Robinson MM, Hamadeh I, et al: CYP2C19 Genotype-Guided Dosing and Voriconazole Concentrations in Hematopoietic Stem Cell Transplant Patients (HSCT) Receiving Antifungal Prophylaxis. Blood 128, 2016; abstr 3416
Crews KR, Cross SJ, McCormick JN, Baker DK, Molinelli AR, Mullins R, Relling MV, Hoffman JM. Development and implementation of a pharmacist-managed clinical pharmacogenetics service. Am J Health Syst Pharm. 2011 Jan 15;68(2):143-50. doi: 10.2146/ajhp100113.
Dunnenberger HM, Crews KR, Hoffman JM, Caudle KE, Broeckel U, Howard SC, Hunkler RJ, Klein TE, Evans WE, Relling MV. Preemptive clinical pharmacogenetics implementation: current programs in five US medical centers. Annu Rev Pharmacol Toxicol. 2015;55:89-106. doi: 10.1146/annurev-pharmtox-010814-124835. Epub 2014 Oct 2.
Provided Documents
Download supplemental materials such as informed consent forms, study protocols, or participant manuals.
Document Type: Informed Consent Form
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
LCI-HEM-BMT-IMPPACT-001
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.