Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
WITHDRAWN
NA
INTERVENTIONAL
2022-09-01
2024-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Desiccated Thyroid Extract Versus Synthetic T3/T4 Combination (ThyrolarTM) Versus L-T4 Alone in the Therapy of Primary Hypothyroidism With Special Attention to the Gene Polymorphism
NCT02317926
A Study of Levothyroxine and Enlicitide Decanoate (MK-0616) in Healthy Adult Participants (MK-0616-028)
NCT06625814
Bioavailability Investigations of Thyronajod Mite Tablets of Dosage Strengths 50 μg Levothyrox-ine/75 μg Iodine, and 100 μg Levothyroxine/75 μg Iodine vs. a Levothyroxine Drinking-Solution: A Randomised Cross Over Study in Healthy Male Individuals. Currently: 100 μg/ 75 μg Tablets
NCT01465646
The Effect of Dietary Supplements for Pregnant Women on Levothyroxine Absorption
NCT04988802
The Effect of Coffee on the Absorption of Thyroid Hormone in Patients With Thyroid Carcinoma
NCT01707056
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Several POU water treatment methods are currently applied in LMICs (e.g., solar disinfection (SODIS), granular media or ceramic pot filtration, chlorination, etc.). Although effective against bacteria, most perform relatively poorly for virus removal, and all POU technologies demonstrate lower efficacy in the field due to compromised initial water quality and operation by relatively unskilled users. While POU technologies have contributed to the reduction of bacterial and parasitic gastroenteritis, instances of viral gastroenteritis have not declined, with viral agents observed in 43% of developing world diarrheal cases.
One POU technology in development that has demonstrated potential for inactivating viruses in drinking water is the application of an edible photosensitizing dye to the water for disinfection. When exposed to sunlight, the photosensitizing dye produces singlet oxygen, a reactive oxygen species (ROS) capable of inactivating a wide range of viruses. Erythrosine, an FDA-approved dye, has proven its ability to disinfect drinking water, achieving 4-log inactivation of bacteriophage MS2 in under 10 minutes of sunlight exposure. Furthermore, the dye photobleaches upon exposure to light, and the accompanying distinct color change (e.g., from erythrosine red to transparent) occurs at a rate comparable to the disinfection, providing a safety indication that disinfection has completed, a much-needed function lacking in other POU technologies. At a total cost of $0.002-0.003 per liter of treated water, it is cheaper than boiling water in several developing nations and is a financially viable water disinfection technology.
Erythrosine, also known as FD\&C Red No. 3 in the USA, is approved by the FDA for use in foods, drugs, and cosmetics, with an acceptable daily intake (ADI) of 2.5 mg/kg bw/day. The concentration recommended by literature for disinfection in drinking water is 5.0 µM erythrosine, or approximately 4.4 mg/L. With the average American consuming 2.38 L of drinking water and beverages per day, a daily exposure of 10.5 mg erythrosine/day is expected. Assuming the total water consumption per day in LMICs matches the American consumption of 2.38 L, then a 60-kg individual would experience a daily erythrosine dose of 0.17 mg/kg bw/day, well below the established FDA ADI.
The motivation for investigating the human health effects of erythrosine stems from the unknown behavior of the photodegradation products. While the molecular structure of erythrosine will change upon oxidation by singlet oxygen, the typical reactions of singlet oxygen are addition reactions that do not typically lead to cleavage of the molecular structure. As a result, it is not expected that the absorption rates of erythrosine to change significantly upon oxidative photobleaching. However, these oxidative products have not been previously tested for toxicity and should be examined before allowing erythrosine-based water disinfection to be further developed. Recent tests have attempted to characterize the photooxidation products of erythrosine but were inconclusive.
Furthermore, previous literature states that \~19% of iodine in the molecular structure of erythrosine is released to the solution after exposure to light and oxidation by singlet oxygen. If the previous water treatment parameters are followed (5.0 µM erythrosine, 2.38 L water/day, 60 kg individual), the daily consumption of iodine released from erythrosine would be 1.1 mg I/day. The lowest observed adverse effect level (LOAEL) and no-observed adverse effect level (NOAEL) for iodine are 1.7 mg I/day and 1.0-1.2 mg I/day, resulting in the tolerable upper intake level (UL) of 1.1 mg I/day. If the literature-reported release of iodine from erythrosine is correct, then exposures are at the UL for iodine. Due to the poor absorption of erythrosine by the gastrointestinal tract, it is not expected that the iodine which remains bound to erythrosine to significantly impact the total iodine consumption. While it is not expected that erythrosine-based water treatment to result in adverse outcomes due to exposure to erythrosine photoproducts or overexposure to iodine, it is important to follow a cautious approach and test for its impact before allowing for the further development of a technology that would be consumed daily by individuals in the developing world.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SEQUENTIAL
1. Erythrosine, prepared in drinking water (0.69 mg/kg bw/day)
2. SODIS-treated erythrosine, prepared in drinking water (0.69 mg/kg bw/day)
3. Iodine, prepared in drinking water 0.075 mg/kg bw/day)
The erythrosine and iodine (control exposure) will be prepared in 500 mL of drinking water and participants will received single daily doses for 14 days. This protocol will be repeated for the three subsequent exposure weeks which will be spaced 2 weeks a part. Instead of receiving daily doses of erythrosine, participants will be given 500 mL of water containing photobleached erythrosine or iodine. The spacing between treatment weeks will serve as a washout period.
PREVENTION
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Erythrosine, prepared in drinking water
One point-of-use technology in development that has demonstrated potential for inactivating viruses in drinking water is the application of an edible photosensitizing dye to the water for disinfection. When exposed to sunlight, the photosensitizing dye produces singlet oxygen, a reactive oxygen species capable of inactivating a wide range of viruses. Erythrosine, an FDA-approved dye, has proven its ability to disinfect drinking water, achieving 4-log inactivation of bacteriophage MS2 in under 10 minutes of sunlight exposure. Furthermore, the dye photobleaches upon exposure to light, and the accompanying distinct color change (e.g., red to transparent) occurs at a rate comparable to the disinfection, providing a safety indication that disinfection has completed, a much-needed function lacking in other point-of-use technologies.
Erythrosine, prepared in drinking water (0.69 mg/kg bw/day)
Erythrosine will be obtained from Roxy \& Rich Inc. (Intense Water-Soluble Food Colorant - Pink), which is certified to be edible and complies with US FDA, Health Canada, and European food safety standards. The erythrosine will be prepared in 500 mL of drinking water and participants will received single daily doses for 14 days. We will use a targeted dose of 0.69 mg/kg bw.
SODIS-treated erythrosine, prepared in drinking water (0.69 mg/kg bw/day)
Erythrosine will be SODIS-treated to produce photobleached erythrosine. Transparent 500 mL polyethylene terephthalate (PET) plastic water bottles will be commercially purchased (Kirkland Signature Purified Water). All branding information and labeling will be removed from the bottles. Water bottles will be dosed with \~41 mg erythrosine (0.69 mg/kg bw) using an erythrosine stock solution (8.2 g/L) and will be shaken to mix. The erythrosine-dosed bottles will be placed on a metal shelf and exposed to natural sunlight on the roof of Yale Engineering. Sunlight exposure will be conducted until the absorbance value of erythrosine at the absorption maximum of 526 nm falls below 0.05 above baseline, as measured by ultraviolet-visible spectroscopy. The water bottles containing photobleached erythrosine will be stored under refrigeration in the dark until consumption by participants.
Iodine, prepared in drinking water 0.075 mg/kg bw/day)
Iodine used in the study will be in the form of FCC-grade potassium iodide, which will be obtained from VWR. FCC grade potassium iodide meets the requirements set by the Food Chemical Codex and is suitable for all applications in foods and beverages. Iodine (control exposure) will be prepared in 500 mL of drinking water and participants will received single daily doses for 14 days. We will use a targeted dose of 0.75 mg/kg bw.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Erythrosine, prepared in drinking water (0.69 mg/kg bw/day)
Erythrosine will be obtained from Roxy \& Rich Inc. (Intense Water-Soluble Food Colorant - Pink), which is certified to be edible and complies with US FDA, Health Canada, and European food safety standards. The erythrosine will be prepared in 500 mL of drinking water and participants will received single daily doses for 14 days. We will use a targeted dose of 0.69 mg/kg bw.
SODIS-treated erythrosine, prepared in drinking water (0.69 mg/kg bw/day)
Erythrosine will be SODIS-treated to produce photobleached erythrosine. Transparent 500 mL polyethylene terephthalate (PET) plastic water bottles will be commercially purchased (Kirkland Signature Purified Water). All branding information and labeling will be removed from the bottles. Water bottles will be dosed with \~41 mg erythrosine (0.69 mg/kg bw) using an erythrosine stock solution (8.2 g/L) and will be shaken to mix. The erythrosine-dosed bottles will be placed on a metal shelf and exposed to natural sunlight on the roof of Yale Engineering. Sunlight exposure will be conducted until the absorbance value of erythrosine at the absorption maximum of 526 nm falls below 0.05 above baseline, as measured by ultraviolet-visible spectroscopy. The water bottles containing photobleached erythrosine will be stored under refrigeration in the dark until consumption by participants.
Iodine, prepared in drinking water 0.075 mg/kg bw/day)
Iodine used in the study will be in the form of FCC-grade potassium iodide, which will be obtained from VWR. FCC grade potassium iodide meets the requirements set by the Food Chemical Codex and is suitable for all applications in foods and beverages. Iodine (control exposure) will be prepared in 500 mL of drinking water and participants will received single daily doses for 14 days. We will use a targeted dose of 0.75 mg/kg bw.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Be 18 years of age or older;
* Be a non-smoker and not be using any contraindicated drugs; and,
* Have no pre-existing health problems.
Exclusion Criteria
* Pregnant
* Diagnosis of a thyroid-related disease.
* Levels of TSH, T3 and T4 outside the normal range.
18 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Yale University
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Yale University
New Haven, Connecticut, United States
Countries
Review the countries where the study has at least one active or historical site.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
2000026634
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.