RIC as an Adjunct Therapy for Severe COVID-19 Disease: a Prospective Randomized Pilot Study
NCT ID: NCT04659460
Last Updated: 2020-12-09
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
NA
30 participants
INTERVENTIONAL
2020-12-15
2021-09-01
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Remote ischemic conditioning (RIC) is an experimental and non-invasive procedure that utilizes the body's natural defense against ischemia-reperfusion (IR) injury, which is believed to stimulate innate multiorgan protection against various systemic immunopathological processes. Although its mechanisms are not entirely understood, favorable outcomes have been demonstrated in multiple remote organs including the heart, kidneys, liver, and lungs. It consists of brief and repeated doses of non-lethal ischemia and reperfusion to a limb using a tourniquet, which is thought to modulate systemic inflammation by altering several inflammatory signaling pathways.
Studies have demonstrated suppression of genes encoding proteins involved in leukocyte chemotaxis, adhesion, migration, and exocytosis, as well as innate immunity responses, cytokine synthesis, and upregulation of anti-inflammatory genes. Multiple human and animal studies have demonstrated its efficacy in decreasing inflammatory biomarkers such as IL-6, CRP, IL-1B, and TNF; inflammatory mediators correlated with increasing COVID-19 disease severity. With regards to safety, currently, over 10,000 patients worldwide have completed clinical trials involving RIC, and another 20,000 are enrolled in ongoing trials. RIC presents few risks in otherwise healthy patients. Theoretical risks are highest in those patients with risk factors for vascular compromise: previous vascular surgery, vascular trauma, or known vascular disease. Excluding such patients, the practise of RIC appears to be safe in human studies This clinical trial will be enrolling 30 COVID-19+, or presumed COVID-19+ ICU patients at St. Michael's Hospital in Toronto, Canada. Eligible patients with severe COVID-19 disease will be randomized to undergo RIC versus sham-RIC. RIC interventions will be applied to one of the extremities calibrated to induce four, ten-minute cycles of five-minutes-ischemia and five-minutes-perfusion for a total of 20 cumulative minutes of limb ischemia, at a pressure of 250 mmHg. All interventions will be performed within 6 hours upon ICU admission of a confirmed or suspected COVID+ patient, given that the patient is determined eligible and their physician deems it safe to enroll. The RIC procedure will be performed every 72 hours upon randomization, +/- 1 hour to accommodate caveats in performing the procedure at that time. Blood will be collected at various timepoints to assess RIC on biomarkers of inflammation and coagulation, and clinical metrics such as need for ventilation, LOS, presentation, and timing of symptoms will be tracked. Patients not in legal capacity and when an SDM cannot be identified or contacted will be enrolled on a deferred consent basis, and provided the option of withdrawing their study data should they regain capacity.
With the current and evolving COVID-19 pandemic, ICU's are at risk of becoming overwhelmed; thus, there exists a need for a safe, rapid, and effective treatment. RIC is known to be a safe procedure that may have the potential to attenuate systemic immunopathological processes implicated in severe COVID-19 disease. If shown to be effective, it may help ameliorate the need for extensive and costly care in the ICU setting. It can theoretically be performed with any tourniquet-like device, which may be useful in a wide range of settings. Lastly, knowledge gained from this research may have the potential to inspire further work into the use of RIC in related conditions, such as viral pneumonia or sepsis.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Keywords
Explore important study keywords that can help with search, categorization, and topic discovery.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
CROSSOVER
TREATMENT
QUADRUPLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Remote Ischemic Conditioning
RIC interventions will be applied to the upper extremity for a total of 20 cumulative minutes of limb ischemia, at a pressure of 250 mmHg.
Remote Ischemic Conditioning
RIC interventions will be applied to the upper extremity calibrated to induce four, ten-minute cycles of five-minutes-ischemia and five-minutes-perfusion for a total of 20 cumulative minutes of limb ischemia, at a pressure of 250 mmHg.
Sham Remote Ischemic Conditioning
RIC sham interventions will be applied to the upper extremity for a total of 20 cumulative minutes. For sham, inflation will occur.
Remote Ischemic Conditioning
RIC interventions will be applied to the upper extremity calibrated to induce four, ten-minute cycles of five-minutes-ischemia and five-minutes-perfusion for a total of 20 cumulative minutes of limb ischemia, at a pressure of 250 mmHg.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Remote Ischemic Conditioning
RIC interventions will be applied to the upper extremity calibrated to induce four, ten-minute cycles of five-minutes-ischemia and five-minutes-perfusion for a total of 20 cumulative minutes of limb ischemia, at a pressure of 250 mmHg.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Admission to ICU
* Either confirmed positive, or presumed, COVID-19 disease
* Radiological evidence of COVID-related pneumonia (CXR or CT abnormalities indicating COVID-19 pneumonia; such as, ground-glass opacities)
* Able to safely undergo conditioning of the arm
* No peripheral vascular disease
* No evidence of prior arm surgery
* No evidence of prior radiation or lymph node dissection
* Clinical staff deems it safe to proceed (Yes/No: signed by MRP)
Exclusion Criteria
* Unable to safely undergo conditioning
* Known peripheral vascular disease
* Evidence of prior arm surgery
* Evidence of prior radiation or lymph node dissection
* Clinical staff deems it unsafe (Yes/No: signed by MRP)
* No radiological evidence of COVID-related pneumonia
* Hemodynamically unstable: Patients with SBP 90 or SBP 180 excluded until hemodynamically stabilized, then reassessed for inclusion
* Anti-coagulation drug use
16 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Defence Research and Development Canada
INDUSTRY
Unity Health Toronto
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
1.4
Identifier Type: -
Identifier Source: org_study_id