Visual Results of the Acrysof IQ Vivity Toric Extended Vision Intraocular Lens
NCT ID: NCT04652037
Last Updated: 2022-12-13
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
20 participants
INTERVENTIONAL
2021-03-17
2022-12-05
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
For most uncomplicated cataract surgeries today in Quebec, Canada, monofocal lens are implanted and their cost is covered by the government. Generally, this lens allows patients to be emmetropic, which translates to good distance vision. However, these patients will need reading glasses for intermediate and near vision. A good proportion of patients are unsatisfied with being dependent on corrective lenses, especially if they did not have any before surgery. There is a correction technique for presbyopia called "monovision", which involves making the patient's dominant eye emmetropic and making the other eye more myopic. This way, the patient can use the myopic eye for intermediate and near vision. Intermediate vision is useful for computer work, for example, while near vision is useful for reading. "Monovision" requires good tolerance of anisometropia by the patient and may interfere with stereoacuity, which may limit its use.
Multifocal intraocular lenses were first implanted in 1986, but took several years to become more commonly adopted. The terms "bifocal" or "trifocal" refer to the number of distinct foci in the lens, allowing the patient to see at different distances. The simultaneous perception of these multiple focal points can be initially disturbing for the patient and may require several months of postoperative neuroadaptation. There are two types of multifocal lenses: refractive and diffractive lenses. Refractive lenses have concentric rings centrifugally increasing in dioptric power on their anterior surface. Diffractive lenses, on the other hand, have diffractive rings on their posterior portion. Meta-analyses have shown that multifocal lenses cause visual disturbances, such as halos and glare, that are more bothersome and frequent than in "monovision". However, multifocal lenses show better rates of independence from spectacles than "monovision". Refractive multifocal lenses, compared to diffractive lenses, tend to produce more glare, halos and higher-order aberrations. However, refractive lenses tend to produce better uncorrected distance visual acuity, while diffractive lenses tend to perform better for near vision.
Finally, extended depth of focus (EDOF) lenses are a newer technology that will be discussed in this study. They have an extended continuous focal point as opposed to the fixed focal points of multifocal lenses, which allows for less superimposition of near and far images compared to multifocal lenses. Theoretical interferometry studies also suggest that EDOF lenses produce better images in between intermediate and near vision. A few comparative studies have shown that EDOF lenses show equal or poorer near visual acuity than diffractive lenses, but have equal or better results for intermediate visual acuity. There are also other newer types of intraocular lenses that, due to their novelty, lack enough data at this time. These include accommodative lenses, postoperative non-invasively adjustable lenses and electronic lenses.
Astigmatism is a refractive error caused by an irregularity in the cornea and/or the crystalline lens that prevents the eye from focusing light evenly on the retina. It causes blurred vision at all distances. It is estimated that almost two-thirds of patients undergoing cataract surgery have preoperative corneal astigmatism between 0.25 and 1.25 diopters. 22% of these patients have astigmatism of 1.50 diopters or more. Toric intraocular lens implantation, first introduced in 1992, is the procedure of choice to correct significant corneal astigmatism (1.00 diopter or greater). For optimal correction of astigmatism with the toric lens, precise alignment of the actual lens axis with the calculated preoperative lens axis of placement is required. This is influenced by several factors, a major one being the rotational stability of the lens. Maximum rotational stability has been observed with hydrophobic acrylic lenses. A prospective study with AcrySof Toric lenses showed significant postoperative rotation of more than 10 degrees in only 1.68% of eyes. In fact, the Acrysof IQ Vivity Toric Extended Vision Intraocular Lens is made with the same AcrySof material, which has shown excellent postoperative rotational stability.
To our knowledge, no study to this day has evaluated the refractive visual outcomes of the Acrysof IQ Vivity Toric Extended Vision Intraocular Lens for the correction of presbyopia and corneal astigmatism. This is believed to be the first study of the Acrysof IQ Vivity Toric Extended Vision Intraocular Lens in Canada. Studying the impact of the Acrysof IQ Vivity Toric Extended Vision Intraocular Lens will provide real-world data on visual acuities after bilateral cataract surgery, intraocular lens rotational stability and subjective assessment of postoperative visual disturbances. This is important to ensure optimal results for patients who wish to have intraocular lenses that correct presbyopia and astigmatism, thus giving them a greater independence from spectacles and a better quality of life.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Keywords
Explore important study keywords that can help with search, categorization, and topic discovery.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Acrysof IQ Vivity Toric Extended Vision Intraocular Lens Implantation
Acrysof IQ Vivity Toric Extended Vision Intraocular Lens Implantation
Implantation during bilateral cataract surgery of a new non-diffractive extended vision presbyopia and astigmatism correcting intraocular lens (Acrysof IQ Vivity Toric Extended Vision Intraocular Lens)
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Acrysof IQ Vivity Toric Extended Vision Intraocular Lens Implantation
Implantation during bilateral cataract surgery of a new non-diffractive extended vision presbyopia and astigmatism correcting intraocular lens (Acrysof IQ Vivity Toric Extended Vision Intraocular Lens)
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Patients motivated by a greater degree of spectacle independence
* Patients possessing with-the-rule astigmatism of ≥ 0.75 diopters (D) or against-the-rule astigmatism of ≥ 0.50 D
* Patients for whom the Barrett Toric Calculator suggests T3-T5 cylinder power AND 15D-25D spherical power in both eyes
* Ability to provide informed consent;
* Ability to be followed for the entire duration of the study.
Exclusion Criteria
* Previous refractive surgery
* Expected post-op visual acuity worse than 20/25 (on Snellen chart)
* Refractive lens exchange
* Irregular corneal astigmatism and keratoconus
* Angle Kappa/chord mu ≥ 0.7
* Higher order corneal aberrations \> 0.6 root mean square (RMS) units (to exclude irregular corneas)
* Difficulties comprehending written or spoken French or English language
* Patients with physical or intellectual disability (e.g. Down syndrome, Parkinson's disease; unable to fixate)
* Ocular surface disease
* Axial length \> 26mm
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Centre hospitalier de l'Université de Montréal (CHUM)
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Georges Durr, MD, FRCSC
Role: PRINCIPAL_INVESTIGATOR
Centre hospitalier de l'Université de Montréal (CHUM)
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Centre hospitalier de l'Université de Montréal (CHUM)
Montreal, Quebec, Canada
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. Br J Ophthalmol. 2012 May;96(5):614-8. doi: 10.1136/bjophthalmol-2011-300539. Epub 2011 Dec 1.
Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV, Das A, Jonas JB, Keeffe J, Kempen JH, Leasher J, Limburg H, Naidoo K, Pesudovs K, Silvester A, Stevens GA, Tahhan N, Wong TY, Taylor HR; Vision Loss Expert Group of the Global Burden of Disease Study. Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis. Lancet Glob Health. 2017 Dec;5(12):e1221-e1234. doi: 10.1016/S2214-109X(17)30393-5. Epub 2017 Oct 11.
Talley-Rostov A. Patient-centered care and refractive cataract surgery. Curr Opin Ophthalmol. 2008 Jan;19(1):5-9. doi: 10.1097/ICU.0b013e3282f2d7a3.
Hawker MJ, Madge SN, Baddeley PA, Perry SR. Refractive expectations of patients having cataract surgery. J Cataract Refract Surg. 2005 Oct;31(10):1970-5. doi: 10.1016/j.jcrs.2005.03.065.
Sieburth R, Chen M. Intraocular lens correction of presbyopia. Taiwan J Ophthalmol. 2019 Jan-Mar;9(1):4-17. doi: 10.4103/tjo.tjo_136_18.
Keates RH, Pearce JL, Schneider RT. Clinical results of the multifocal lens. J Cataract Refract Surg. 1987 Sep;13(5):557-60. doi: 10.1016/s0886-3350(87)80114-1.
Alio JL, Plaza-Puche AB, Fernandez-Buenaga R, Pikkel J, Maldonado M. Multifocal intraocular lenses: An overview. Surv Ophthalmol. 2017 Sep-Oct;62(5):611-634. doi: 10.1016/j.survophthal.2017.03.005. Epub 2017 Mar 31.
de Silva SR, Evans JR, Kirthi V, Ziaei M, Leyland M. Multifocal versus monofocal intraocular lenses after cataract extraction. Cochrane Database Syst Rev. 2016 Dec 12;12(12):CD003169. doi: 10.1002/14651858.CD003169.pub4.
Xu X, Zhu MM, Zou HD. Refractive versus diffractive multifocal intraocular lenses in cataract surgery: a meta-analysis of randomized controlled trials. J Refract Surg. 2014 Sep;30(9):634-44. doi: 10.3928/1081597X-20140814-04.
Dominguez-Vicent A, Esteve-Taboada JJ, Del Aguila-Carrasco AJ, Monsalvez-Romin D, Montes-Mico R. In vitro optical quality comparison of 2 trifocal intraocular lenses and 1 progressive multifocal intraocular lens. J Cataract Refract Surg. 2016 Jan;42(1):138-47. doi: 10.1016/j.jcrs.2015.06.040.
Savini G, Schiano-Lomoriello D, Balducci N, Barboni P. Visual Performance of a New Extended Depth-of-Focus Intraocular Lens Compared to a Distance-Dominant Diffractive Multifocal Intraocular Lens. J Refract Surg. 2018 Apr 1;34(4):228-235. doi: 10.3928/1081597X-20180125-01.
Cochener B, Boutillier G, Lamard M, Auberger-Zagnoli C. A Comparative Evaluation of a New Generation of Diffractive Trifocal and Extended Depth of Focus Intraocular Lenses. J Refract Surg. 2018 Aug 1;34(8):507-514. doi: 10.3928/1081597X-20180530-02.
Ferrer-Blasco T, Montes-Mico R, Peixoto-de-Matos SC, Gonzalez-Meijome JM, Cervino A. Prevalence of corneal astigmatism before cataract surgery. J Cataract Refract Surg. 2009 Jan;35(1):70-5. doi: 10.1016/j.jcrs.2008.09.027.
Shimizu K, Misawa A, Suzuki Y. Toric intraocular lenses: correcting astigmatism while controlling axis shift. J Cataract Refract Surg. 1994 Sep;20(5):523-6. doi: 10.1016/s0886-3350(13)80232-5.
Kaur M, Shaikh F, Falera R, Titiyal JS. Optimizing outcomes with toric intraocular lenses. Indian J Ophthalmol. 2017 Dec;65(12):1301-1313. doi: 10.4103/ijo.IJO_810_17.
Miyake T, Kamiya K, Amano R, Iida Y, Tsunehiro S, Shimizu K. Long-term clinical outcomes of toric intraocular lens implantation in cataract cases with preexisting astigmatism. J Cataract Refract Surg. 2014 Oct;40(10):1654-60. doi: 10.1016/j.jcrs.2014.01.044. Epub 2014 Aug 20.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
20.263
Identifier Type: -
Identifier Source: org_study_id