Bone Markers and Bone Density Changes in Hyperperparathyroid Dialysis Patients Under Cinacalcet Treatment
NCT ID: NCT04637360
Last Updated: 2020-11-19
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
40 participants
INTERVENTIONAL
2018-01-01
2020-06-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Methods: Our study includes 50 hyperparathyroid dialysis patients using cinacalcet from 1st Dec 2017 to 31 Oct 2018. Investigators will exclude post-menopausal female subjects. Enzyme-linked immunosorbent assay and Western blot analysis will be done for bone turnover markers (TRACP,Alk-P,S1P,BMP6,Wnt,10B,16,SOST,P1NP,PDGF BB,HGF and CTHRC1, etc.). Bone mineral density will be determined by dual-energy X-ray absorptiometry (DXA). Plasma fibroblast growth factor (FGF-23), Ca 2+ , P 3+ , calcium-phosphorus product and parathyroid hormone will also be measured. Data will be collected and analyzed the differences between baseline measures and 4 weekly and follow up for 6 months after the treatment. Control group that we enrolled 30 hyperparathyroid dialysis patients using traditional therapy active vitamin D without use cinacalcet.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Clinically, bone histomorphometry is still considered as the gold standard though clinically unfeasible due to its invasive and technician-dependent nature. Serum intact PTH (iPTH) and BSAP are recently used as markers of turnover to discriminate renal osteodystrophy. High serum iPTH and BSAP considered as high-turnover bone disease, whereas low serum iPTH, low BSAP, and normal vitamin D levels occur in adynamic bone disease (ABD) patients. Low vitamin D and PTH levels in conjunction with high levels of BSAP are correlated with osteomalacia. The Kidney Disease Outcomes Quality Initiative (K/DOQI) guideline use intact parathyroid hormone (iPTH) as a reliable surrogate marker for bone turnover and suggested that iPTH should be maintained in a target range between 150 and 300 pg ml-1 for patients with stage 5 CKD patients. However, some studies33 also found discrepancies between iPTH and histomorphometry findings in dialysis patients. Bone-derived markers of bone formation and resorption may be required to accurately measure bone structure and function in these patients. Bone formation markers including bone-specific alkaline phosphatase (BSAP), osteocalcin, and procollagen type-1 N-terminal propeptide (P1NP) are markers of osteoblast function. Bone resorption markers such as tartrate-resistant acid phosphatase 5b (Trap-5b) and C-terminal telopeptides of type I collagen (CTX) are markers of osteoclast number and function. Trap-5b and BSAP are not cleared by the kidneys and are mostly used in CKD patients as useful biomarkers. Osteocalcin, P1NP monomer, and CTX are cleared by the kidneys, and their usefulness in treating CKD patients remains unclear. Although many other circulating markers for bone remodeling disorders in CKD 34 patients have been evaluated, their clinical uses still not clear.
Human genetic studies have highlighted the crucial role of wingless (Wnt) signaling in bone mass regulation. Wnts are extracellular proteins that are linked to intracellular canonical and noncanonical Wnt signaling pathways when activated. They were found to be implicated in osteoblast and osteoclastic differentiation and function35, which are critical for trabecular and cortical bone mass. Wnt3a and Wnt10b, acting through canonical signaling; and Wnt16, acting through both canonical and noncanonical signaling, induce production of OPG in osteoblasts. OPG binds to the osteoclast-inducing cytokine RANKL and thereby inhibits osteoclast differentiation. Osteoblast Wnt5a potentiates RANK-induced osteoclast differentiation by activating ROR2-dependent noncanonical signaling. By contrast, Wnt 4 and Wnt 16 act directly through noncanonical signaling on osteoclast progenitors to inhibit RANKL-induced osteoclast formation. In addition to these known concepts about osteoblast-lineage cells influence on osteoclast precursors, recent researchers found that osteoclasts are capable of producing 'clastokines' that regulate osteoblast performance and bone formation. A study demonstrated that osteoclasts recruit osteoprogenitors and promote mineralization through the release of chemokine sphingosine 1 phosphate(S1P), bone morphogenetic protein 6 (BMP6) and Wnt10b. Further, osteoclast production of Wnt 10b found to mediate mineralization through increased TGF-βduring bone resorption phase. The sophisticated role of Wnt signaling in the human CKD and end-stage renal disease (ESRD) population still requires exploration. Several therapeutic interventions (active vitamin D analogues, phosphate binders, calcimimetics or surgical parathyroidectomy) are used nowadays to modulate mineral disturbances in order to reduce the CKD-MBD related clinical consequences. Calcimimetics, such as cinacalcet, a positive allosteric modulator of the calcium sensing receptor (CaSR), increases the PTH sensitivity to extracellular calcium and subsequently reduces the PTH secretion. Extensive preclinical studies have indicated that calcimimetics also arrest the progression of parathyroid hyperplasia. Combined randomized clinical trials (RCTs) and phase 4 studies confirmed the pleiotropic effects of calcimimetic agents in clinical grounds, including reduction of the elevated bone formation rate/tissue area with improvement in high turnover bone disorders. Some studies also confirm that adding calcimimetic cinacalcet can reduce the risk of fractures in SHPT patients. A bone histomorphologic study of 4 HD patients under cinacalcet treatment revealed decreased bone fibrosis, osteoblast surface and osteoid-related parameters.
Although mechanisms of calcimimetics in parathyroid hyperplasia are clearly explored, its effects on osteoclasts and osteoblasts (basic multicellular units) at bone remodeling sites are still unclear. A study revealed high extracellular calcium induces mitogenic action of osteoblasts via calcium-sensing receptors. However, another in vitro study on mouse and human adult osteoclastic and osteoblastic cells demonstrated the calcium dependent increase osteoblast formation and decrease osteoclast formation/function might not through the calcium sensing receptors, and not effected by calcimimetics. The calcimimetics might have any other mechanisms not through effects on calcium or calcium sensing receptors on these osteoblasts. Based on above information, investigators hypothesized that bone turnover markers including Wnt changes occur in SHPT hemodialysis patients. In addition, investigators consider the hypothetical role of cinacalcet mediated bone turnover changes occurred in the process of cinacalcet related bone anabolism.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Keywords
Explore important study keywords that can help with search, categorization, and topic discovery.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NON_RANDOMIZED
PARALLEL
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Cinacalcet treatment
hyperparathyroid dialysis patients using cinacalcet and active vitamin D for 6 months
Cinacalcet Tablets
All study subjects were treated with a fixed dose of oral Cinacalcet (25 mg/day) from baseline to 6 months.
calcitriol
All hyperparathyroidism were treated as traditional therapy with oral calcitriol 0.25 mcg(dosage according to IPTH serum level) from baseline to 6 months.
traditional therapy active vitamin D
hyperparathyroid dialysis patients using traditional therapy active vitamin D without use cinacalcet for 6 months.
calcitriol
All hyperparathyroidism were treated as traditional therapy with oral calcitriol 0.25 mcg(dosage according to IPTH serum level) from baseline to 6 months.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Cinacalcet Tablets
All study subjects were treated with a fixed dose of oral Cinacalcet (25 mg/day) from baseline to 6 months.
calcitriol
All hyperparathyroidism were treated as traditional therapy with oral calcitriol 0.25 mcg(dosage according to IPTH serum level) from baseline to 6 months.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
2. Hyperparathyroid (iPTH\>300 pg/mL) regular dialysis patients using cinacalcet and start the treatment during the study period.
Exclusion Criteria
2. Post-menopausal female patients
3. Malignancies, inflammatory or infectious disease \< 3 months
4. Pregnancy
5. Severe malnutrition
6. Surgical intervention \< 3 months
7. Acute myocardial infarction, unstable angina, cerebrovascular disease or transient ischemic attack, deep vein thrombosis, pulmonary embolism, congestive heart failure \< 3months.
20 Years
80 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Taipei Medical University Shuang Ho Hospital
OTHER
Taipei Medical University
OTHER
En Chu Kong Hospital
OTHER
National Taiwan University
OTHER
Taichung Tzu Chi Hospital
OTHER
Min-Sheng General Hospital
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Ren-Si Syu, Dr.
Role: STUDY_DIRECTOR
Min-Sheng General Hospital
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Min sheng general hospital
Taoyuan, , Taiwan
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl. 2009 Aug;(113):S1-130. doi: 10.1038/ki.2009.188.
London GM, Marchais SJ, Guerin AP, Boutouyrie P, Metivier F, de Vernejoul MC. Association of bone activity, calcium load, aortic stiffness, and calcifications in ESRD. J Am Soc Nephrol. 2008 Sep;19(9):1827-35. doi: 10.1681/ASN.2007050622. Epub 2008 May 14.
Cunningham J, Locatelli F, Rodriguez M. Secondary hyperparathyroidism: pathogenesis, disease progression, and therapeutic options. Clin J Am Soc Nephrol. 2011 Apr;6(4):913-21. doi: 10.2215/CJN.06040710. Epub 2011 Mar 31.
Westin G, Bjorklund P, Akerstrom G. Molecular genetics of parathyroid disease. World J Surg. 2009 Nov;33(11):2224-33. doi: 10.1007/s00268-009-0022-6.
Zheng CM, Zheng JQ, Wu CC, Lu CL, Shyu JF, Yung-Ho H, Wu MY, Chiu IJ, Wang YH, Lin YF, Lu KC. Bone loss in chronic kidney disease: Quantity or quality? Bone. 2016 Jun;87:57-70. doi: 10.1016/j.bone.2016.03.017. Epub 2016 Apr 2.
Block GA, Klassen PS, Lazarus JM, Ofsthun N, Lowrie EG, Chertow GM. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol. 2004 Aug;15(8):2208-18. doi: 10.1097/01.ASN.0000133041.27682.A2.
Mazzaferro S, Tartaglione L, Rotondi S, Bover J, Goldsmith D, Pasquali M. News on biomarkers in CKD-MBD. Semin Nephrol. 2014 Nov;34(6):598-611. doi: 10.1016/j.semnephrol.2014.09.006.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
MSIRB2018004
Identifier Type: -
Identifier Source: org_study_id