Multi -paramEtric Imaging to Assess Treatment REsponse After Stereotactic Radiosurgery of Brain Metastases
NCT ID: NCT04626206
Last Updated: 2020-11-12
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
12 participants
OBSERVATIONAL
2020-12-31
2021-08-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
The next best option we have is the multi-parametric MRI which typically consists of three components-MR perfusion, MR diffusion and MR spectroscopy. This investigation is resource intensive, requiring considerable input form MR physics, neuroradiology reporting time , is not routinely available in all centres and hence not viable for routine clinical practice.
Therefore there is an urgent need for a reliable and viable form of imaging modality that helps differentiate tumour from radionecrosis when assessing treatment response post-SRS. It is important to be able to do this accurately as the management of both conditions are entirely different.
Currently the Royal Marsden Hospital is using contrast-clearance analysis MRI (TRAMs) to help differentiate tumour from radionecrosis if the changes seen on standard brain MRI post-SRS are deemed to be unclear. Contrast-clearance analysis MRI (TRAMs) is FDA approved and conforms to European standards (CE marked), yet has sparse evidence on its efficacy. There is some evidence for the use of 18F-choline PET/CT in primary brain tumours (gliomas) but more evidence is needed for its use in brain metastases.
Given that surgical excision is not always feasible for reasons explained above, in this study the investigators consider the muti-parametric MRI as the gold standard investigation for discriminating tumour from radionecrosis.
This pilot brain imaging study is seeking to determine if contrast-clearance analysis MRI (TRAMs) and/or 18F-choline PET/CT are equivalent to multi-parametric MRI in their ability to reliably differentiate between tumour progression/recurrence and radionecrosis. If contrast clearance analysis MRI (TRAMs) and/or 18F-choline PET/CT are found to be equivalent to multi- parametric MRI then it gives the investigators increased confidence in the findings of these readily available imaging modalities, helping treating clinicians to make rapid and reliable management plans- ultimately improving patient outcomes.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Keywords
Explore important study keywords that can help with search, categorization, and topic discovery.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
PROSPECTIVE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Imaging to asess treatment response post-SRS
There will be only one group. All recruited patients will have 3 scans, the multi-parametric MRI, contrast-clearance analysis MRI (TRAMs) and 18F-choline-PET/CT.
This is a non interventional study. Only the results of the contrast-clearance analysis MRI (TRAMs) will be used to make clinical decisions (as this is the current standard of care at the recruiting site). The multi-parametric MRI and 18F-choline PET/CT will be treated as research scans.
No interventions assigned to this group
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Patient should have had SRS as their primary treatment for their brain metastases
* Follow-up standard brain MRI post-SRS has been discussed in the SRS multi-disciplinary team meeting (MDT)
* The changes seen on the post-SRS follow-up standard MRI are deemed unclear by the SRS MDT as to whether they represent tumour progression or radionecrosis.
* It is \>=12 weeks since completion of SRS
Exclusion Criteria
* Children (age \< 18)
* Pregnant women
* Adults that lack capacity to consent
* Contraindications to intravenous gadolinium contrast and/or 18F-choline radiotracer
* Contraindications to MRI scanning (for example pacemaker )
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
National Institute for Health Research, United Kingdom
OTHER_GOV
Royal Marsden NHS Foundation Trust
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Liam Welsh, MBBS,FRCR
Role: PRINCIPAL_INVESTIGATOR
Royal Marsden Hospital NHS Foundation Trust
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
References
Explore related publications, articles, or registry entries linked to this study.
Stelzer KJ. Epidemiology and prognosis of brain metastases. Surg Neurol Int. 2013 May 2;4(Suppl 4):S192-202. doi: 10.4103/2152-7806.111296. Print 2013.
Lowery FJ, Yu D. Brain metastasis: Unique challenges and open opportunities. Biochim Biophys Acta Rev Cancer. 2017 Jan;1867(1):49-57. doi: 10.1016/j.bbcan.2016.12.001. Epub 2016 Dec 6.
Hoffman JM. New advances in brain tumor imaging. Curr Opin Oncol. 2001 May;13(3):148-53. doi: 10.1097/00001622-200105000-00003.
Hein PA, Eskey CJ, Dunn JF, Hug EB. Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. AJNR Am J Neuroradiol. 2004 Feb;25(2):201-9.
Sundgren PC, Fan X, Weybright P, Welsh RC, Carlos RC, Petrou M, McKeever PE, Chenevert TL. Differentiation of recurrent brain tumor versus radiation injury using diffusion tensor imaging in patients with new contrast-enhancing lesions. Magn Reson Imaging. 2006 Nov;24(9):1131-42. doi: 10.1016/j.mri.2006.07.008. Epub 2006 Sep 18.
Matsusue E, Fink JR, Rockhill JK, Ogawa T, Maravilla KR. Distinction between glioma progression and post-radiation change by combined physiologic MR imaging. Neuroradiology. 2010 Apr;52(4):297-306. doi: 10.1007/s00234-009-0613-9. Epub 2009 Oct 16.
Rock JP, Scarpace L, Hearshen D, Gutierrez J, Fisher JL, Rosenblum M, Mikkelsen T. Associations among magnetic resonance spectroscopy, apparent diffusion coefficients, and image-guided histopathology with special attention to radiation necrosis. Neurosurgery. 2004 May;54(5):1111-7; discussion 1117-9. doi: 10.1227/01.neu.0000119328.56431.a7.
Zach L, Guez D, Last D, Daniels D, Grober Y, Nissim O, Hoffmann C, Nass D, Talianski A, Spiegelmann R, Tsarfaty G, Salomon S, Hadani M, Kanner A, Blumenthal DT, Bukstein F, Yalon M, Zauberman J, Roth J, Shoshan Y, Fridman E, Wygoda M, Limon D, Tzuk T, Cohen ZR, Mardor Y. Delayed contrast extravasation MRI: a new paradigm in neuro-oncology. Neuro Oncol. 2015 Mar;17(3):457-65. doi: 10.1093/neuonc/nou230. Epub 2014 Nov 30.
Chen K, Chen X. Positron emission tomography imaging of cancer biology: current status and future prospects. Semin Oncol. 2011 Feb;38(1):70-86. doi: 10.1053/j.seminoncol.2010.11.005.
Nanni C, Rubello D, Fanti S. Could choline PET play a role in malignancies other than prostate cancer? Eur J Nucl Med Mol Imaging. 2008 Jan;35(1):216-8. doi: 10.1007/s00259-007-0591-2. Epub 2007 Sep 26. No abstract available.
Zeisel SH, Blusztajn JK. Choline and human nutrition. Annu Rev Nutr. 1994;14:269-96. doi: 10.1146/annurev.nu.14.070194.001413.
Fagone P, Jackowski S. Phosphatidylcholine and the CDP-choline cycle. Biochim Biophys Acta. 2013 Mar;1831(3):523-32. doi: 10.1016/j.bbalip.2012.09.009. Epub 2012 Sep 23.
Treglia G, Sadeghi R, Del Sole A, Giovanella L. Diagnostic performance of PET/CT with tracers other than F-18-FDG in oncology: an evidence-based review. Clin Transl Oncol. 2014 Sep;16(9):770-5. doi: 10.1007/s12094-014-1168-8. Epub 2014 Mar 20.
Treglia G, Giovannini E, Di Franco D, Calcagni ML, Rufini V, Picchio M, Giordano A. The role of positron emission tomography using carbon-11 and fluorine-18 choline in tumors other than prostate cancer: a systematic review. Ann Nucl Med. 2012 Jul;26(6):451-61. doi: 10.1007/s12149-012-0602-7. Epub 2012 May 8.
Kato T, Shinoda J, Nakayama N, Miwa K, Okumura A, Yano H, Yoshimura S, Maruyama T, Muragaki Y, Iwama T. Metabolic assessment of gliomas using 11C-methionine, [18F] fluorodeoxyglucose, and 11C-choline positron-emission tomography. AJNR Am J Neuroradiol. 2008 Jun;29(6):1176-82. doi: 10.3174/ajnr.A1008. Epub 2008 Apr 3.
Ohtani T, Kurihara H, Ishiuchi S, Saito N, Oriuchi N, Inoue T, Sasaki T. Brain tumour imaging with carbon-11 choline: comparison with FDG PET and gadolinium-enhanced MR imaging. Eur J Nucl Med. 2001 Nov;28(11):1664-70. doi: 10.1007/s002590100620.
Tian M, Zhang H, Oriuchi N, Higuchi T, Endo K. Comparison of 11C-choline PET and FDG PET for the differential diagnosis of malignant tumors. Eur J Nucl Med Mol Imaging. 2004 Aug;31(8):1064-72. doi: 10.1007/s00259-004-1496-y. Epub 2004 Mar 11.
Gao L, Xu W, Li T, Zheng J, Chen G. Accuracy of 11C-choline positron emission tomography in differentiating glioma recurrence from radiation necrosis: A systematic review and meta-analysis. Medicine (Baltimore). 2018 Jul;97(29):e11556. doi: 10.1097/MD.0000000000011556.
Li Y, Jin G, Su D. Comparison of Gadolinium-enhanced MRI and 18FDG PET/PET-CT for the diagnosis of brain metastases in lung cancer patients: A meta-analysis of 5 prospective studies. Oncotarget. 2017 May 30;8(22):35743-35749. doi: 10.18632/oncotarget.16182.
Li H, Deng L, Bai HX, Sun J, Cao Y, Tao Y, States LJ, Farwell MD, Zhang P, Xiao B, Yang L. Diagnostic Accuracy of Amino Acid and FDG-PET in Differentiating Brain Metastasis Recurrence from Radionecrosis after Radiotherapy: A Systematic Review and Meta-Analysis. AJNR Am J Neuroradiol. 2018 Feb;39(2):280-288. doi: 10.3174/ajnr.A5472. Epub 2017 Dec 14.
Wagner S, Lanfermann H, Eichner G, Gufler H. Radiation injury versus malignancy after stereotactic radiosurgery for brain metastases: impact of time-dependent changes in lesion morphology on MRI. Neuro Oncol. 2017 Apr 1;19(4):586-594. doi: 10.1093/neuonc/now193.
Treglia G, Muoio B, Trevisi G, Mattoli MV, Albano D, Bertagna F, Giovanella L. Diagnostic Performance and Prognostic Value of PET/CT with Different Tracers for Brain Tumors: A Systematic Review of Published Meta-Analyses. Int J Mol Sci. 2019 Sep 20;20(19):4669. doi: 10.3390/ijms20194669.
National Instituite for Health Care and Excellence. Brain tumours (primary) and brain metastases in adults. NICE Guidel NG99. 2018;(July):1-56.
NHS England. D05/S/a NHS STANDARD CONTRACT FOR STEREOTACTIC RADIOSURGERY AND STEREOTACTIC RADIOTHERAPY (INTRACRANIAL) (ALL AGES) SCHEDULE 2- THE SERVICES - A. SERVICE SPECIFICATIONS. 2013;800(October):1-26.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
CCR5331
Identifier Type: -
Identifier Source: org_study_id