Dexmedetomidine Supplemented Analgesia in Patients at High-risk of Obstructive Sleep Apnea
NCT ID: NCT04608331
Last Updated: 2022-12-13
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
PHASE4
152 participants
INTERVENTIONAL
2021-01-29
2022-09-20
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
High-flow nasal cannula (HFNC) therapy can improve the oxygenation of OSA patients by forming a certain positive pressure in the nasopharyngeal cavity. Previous studies showed that HFNC therapy can reduce respiratory events, improve oxygenation in patients with moderate to severe OSA.
Dexmedetomidine is a highly selective α2-adrenoceptor agonist with sedative, analgesic and anti-anxiety properties. Unlike other sedative agents, dexmedetomidine exerts its sedative effects through an endogenous sleep-promoting pathway, producing a state like non-rapid eye movement sleep without disturbing respiration. Our previous studies shows that dexmedetomidine supplemented analgesia can improve sleep quality and pain relief in patients after surgery.
The investigators hypothesize that, for patients at high-risk of OSA who are recovering from major non-cardiac surgery and receiving HFNC therapy, dexmedetomidine supplemented analgesia can improve sleep quality and postoperative recovery. The purpose of this pilot randomized controlled trial is to investigate the impact of dexmedetomidine supplemented analgesia on the sleep quality in high-risk OSA patients after major non-cardiac surgery.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Keywords
Explore important study keywords that can help with search, categorization, and topic discovery.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
PREVENTION
QUADRUPLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Dexmedetomidine group
Patient-controlled analgesia is established with morphine (0.5 mg/ml) and dexmedetomidine (1.25 microgram/ml) in a total volume of 160 ml. The pump is programmed to deliver 2-ml boluses at 6 to 8-minute lockout intervals with a background infusion rate at 1 ml/h. Patient-controlled analgesia is provided for at least 24 hours after surgery.
Dexmedetomidine
Patient-controlled analgesia is provided for at least 24 hours but no more than 48 hours. The pump is established with morphine (0.5 mg/ml) and dexmedetomidine (1.25 microgram/ml), in a total volume of 160 ml normal saline, and programmed to deliver 2-ml boluses at 6 to 8-minute lockout intervals with a background infusion rate of 1 ml/h.
Placebo group
Patient-controlled analgesia is established with morphine (0.5 mg/ml) in a total volume of 160 ml. The pump is programmed to deliver 2-ml boluses at 6 to 8-minute lockout intervals with a background infusion rate at 1 ml/h. Patient-controlled analgesia is provided for at least 24 hours after surgery.
Placebo
Patient-controlled analgesia is provided for at least 24 hours but no more than 48 hours. The pump is established with morphine (0.5 mg/ml), in a total volume of 160 ml normal saline, and programmed to deliver 2-ml boluses at 6 to 8-minute lockout intervals with a background infusion rate of 1 ml/h.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Dexmedetomidine
Patient-controlled analgesia is provided for at least 24 hours but no more than 48 hours. The pump is established with morphine (0.5 mg/ml) and dexmedetomidine (1.25 microgram/ml), in a total volume of 160 ml normal saline, and programmed to deliver 2-ml boluses at 6 to 8-minute lockout intervals with a background infusion rate of 1 ml/h.
Placebo
Patient-controlled analgesia is provided for at least 24 hours but no more than 48 hours. The pump is established with morphine (0.5 mg/ml), in a total volume of 160 ml normal saline, and programmed to deliver 2-ml boluses at 6 to 8-minute lockout intervals with a background infusion rate of 1 ml/h.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
2. At high-risk of obstructive sleep apnea (a STOP-Bang score ≥3 combined with a serum bicarbonate ≥28 mmol/ L), but does not regularly receive continuous positive airway pressure (CPAP) therapy;
3. Scheduled to undergo major noncardiac surgery under general anesthesia, with an expected duration of \>=1 hours and planned to use patient-controlled intravenous analgesia (PCIA) after surgery.
Exclusion Criteria
2. Preoperative history of severe central nervous system diseases (epilepsy, parkinsonism, intracranial tumor, craniocerebral trauma) or neuromuscular disorders (myasthenia gravis);
3. History of schizophrenia or other mental disorders, or antidepressant or anxiolytic therapy within 3 month before surgery;
4. Inability to communicate in the preoperative period because of coma, profound dementia, deafness or language barriers;
5. History of drug or alcohol dependence, or sedative or hypnotic therapy within 1 month before surgery;
6. Contraindications to HFNC therapy (e.g. mediastinal emphysema, shock, cerebrospinal fluid leakage, nasosinusitis, otitis media, glaucoma);
7. Severe tracheal or pulmonary disease (e.g. bullous lung disease, pneumothorax, tracheal fistula);
8. Sick sinus syndrome, severe sinus bradycardia (\<50 beats per minute), or second-degree or above atrioventricular block without pacemaker;
9. Severe hepatic dysfunction (Child-Pugh class C); Severe renal dysfunction (requirement of renal replacement therapy); severe heart dysfunction (preoperative New York Heart Association functional classification ≥3 or left ventricular ejection fraction \<30%); ASA classification IV or above; or expected survival \<24 hours after surgery;
10. Preoperative use of CPAP or HFNC therapy;
11. Expected intensive care unit (ICU) admission with tracheal intubation after surgery;
12. Refuse to participate in this study;
13. Other conditions that are considered unsuitable for study participation.
18 Years
80 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Peking University First Hospital
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Dong-Xin Wang
Professor
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Dong-Xin Wang, MD, PhD
Role: PRINCIPAL_INVESTIGATOR
Peking University First Hospital
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Dong-Xin Wang
Beijing, Beijing Municipality, China
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Dempsey JA, Veasey SC, Morgan BJ, O'Donnell CP. Pathophysiology of sleep apnea. Physiol Rev. 2010 Jan;90(1):47-112. doi: 10.1152/physrev.00043.2008.
Benjafield AV, Ayas NT, Eastwood PR, Heinzer R, Ip MSM, Morrell MJ, Nunez CM, Patel SR, Penzel T, Pepin JL, Peppard PE, Sinha S, Tufik S, Valentine K, Malhotra A. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med. 2019 Aug;7(8):687-698. doi: 10.1016/S2213-2600(19)30198-5. Epub 2019 Jul 9.
Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM. Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol. 2013 May 1;177(9):1006-14. doi: 10.1093/aje/kws342. Epub 2013 Apr 14.
Lee W, Nagubadi S, Kryger MH, Mokhlesi B. Epidemiology of Obstructive Sleep Apnea: a Population-based Perspective. Expert Rev Respir Med. 2008 Jun 1;2(3):349-364. doi: 10.1586/17476348.2.3.349.
Kapur VK, Auckley DH, Chowdhuri S, Kuhlmann DC, Mehra R, Ramar K, Harrod CG. Clinical Practice Guideline for Diagnostic Testing for Adult Obstructive Sleep Apnea: An American Academy of Sleep Medicine Clinical Practice Guideline. J Clin Sleep Med. 2017 Mar 15;13(3):479-504. doi: 10.5664/jcsm.6506.
Brown KA. Intermittent hypoxia and the practice of anesthesia. Anesthesiology. 2009 Apr;110(4):922-7. doi: 10.1097/ALN.0b013e31819c480a.
Fassbender P, Herbstreit F, Eikermann M, Teschler H, Peters J. Obstructive Sleep Apnea-a Perioperative Risk Factor. Dtsch Arztebl Int. 2016 Jul 11;113(27-28):463-9. doi: 10.3238/arztebl.2016.0463.
Kaw R, Pasupuleti V, Walker E, Ramaswamy A, Foldvary-Schafer N. Postoperative complications in patients with obstructive sleep apnea. Chest. 2012 Feb;141(2):436-441. doi: 10.1378/chest.11-0283. Epub 2011 Aug 25.
Hwang D, Shakir N, Limann B, Sison C, Kalra S, Shulman L, Souza Ade C, Greenberg H. Association of sleep-disordered breathing with postoperative complications. Chest. 2008 May;133(5):1128-34. doi: 10.1378/chest.07-1488. Epub 2008 Mar 13.
Liao P, Yegneswaran B, Vairavanathan S, Zilberman P, Chung F. Postoperative complications in patients with obstructive sleep apnea: a retrospective matched cohort study. Can J Anaesth. 2009 Nov;56(11):819-28. doi: 10.1007/s12630-009-9190-y.
Aloia MS, Stanchina M, Arnedt JT, Malhotra A, Millman RP. Treatment adherence and outcomes in flexible vs standard continuous positive airway pressure therapy. Chest. 2005 Jun;127(6):2085-93. doi: 10.1378/chest.127.6.2085.
Helviz Y, Einav S. A Systematic Review of the High-flow Nasal Cannula for Adult Patients. Crit Care. 2018 Mar 20;22(1):71. doi: 10.1186/s13054-018-1990-4.
McGinley BM, Patil SP, Kirkness JP, Smith PL, Schwartz AR, Schneider H. A nasal cannula can be used to treat obstructive sleep apnea. Am J Respir Crit Care Med. 2007 Jul 15;176(2):194-200. doi: 10.1164/rccm.200609-1336OC. Epub 2007 Mar 15.
Weerink MAS, Struys MMRF, Hannivoort LN, Barends CRM, Absalom AR, Colin P. Clinical Pharmacokinetics and Pharmacodynamics of Dexmedetomidine. Clin Pharmacokinet. 2017 Aug;56(8):893-913. doi: 10.1007/s40262-017-0507-7.
Su X, Meng ZT, Wu XH, Cui F, Li HL, Wang DX, Zhu X, Zhu SN, Maze M, Ma D. Dexmedetomidine for prevention of delirium in elderly patients after non-cardiac surgery: a randomised, double-blind, placebo-controlled trial. Lancet. 2016 Oct 15;388(10054):1893-1902. doi: 10.1016/S0140-6736(16)30580-3. Epub 2016 Aug 16.
Zhang DF, Su X, Meng ZT, Li HL, Wang DX, Xue-Ying Li, Maze M, Ma D. Impact of Dexmedetomidine on Long-term Outcomes After Noncardiac Surgery in Elderly: 3-Year Follow-up of a Randomized Controlled Trial. Ann Surg. 2019 Aug;270(2):356-363. doi: 10.1097/SLA.0000000000002801.
Chung F, Abdullah HR, Liao P. STOP-Bang Questionnaire: A Practical Approach to Screen for Obstructive Sleep Apnea. Chest. 2016 Mar;149(3):631-8. doi: 10.1378/chest.15-0903. Epub 2016 Jan 12.
Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004 Aug;240(2):205-13. doi: 10.1097/01.sla.0000133083.54934.ae.
Katayama H, Kurokawa Y, Nakamura K, Ito H, Kanemitsu Y, Masuda N, Tsubosa Y, Satoh T, Yokomizo A, Fukuda H, Sasako M. Extended Clavien-Dindo classification of surgical complications: Japan Clinical Oncology Group postoperative complications criteria. Surg Today. 2016 Jun;46(6):668-85. doi: 10.1007/s00595-015-1236-x. Epub 2015 Aug 20.
Sun P, Liang XQ, Chen NP, Ma JH, Zhang C, Shen YE, Zhu SN, Wang DX. Impact of mini-dose dexmedetomidine supplemented analgesia on sleep structure in patients at high risk of obstructive sleep apnea: a pilot trial. Front Neurosci. 2024 Oct 2;18:1426729. doi: 10.3389/fnins.2024.1426729. eCollection 2024.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
2020-189
Identifier Type: -
Identifier Source: org_study_id