Transplacental Aspirin Therapy for Early Onset Fetal Growth Restriction
NCT ID: NCT04557475
Last Updated: 2021-06-16
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
WITHDRAWN
PHASE3
INTERVENTIONAL
2022-06-11
2023-06-11
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Aspirin Dose Escalation for the Prevention of Recurrent Preterm Delivery Trial
NCT06980025
Antenatal Platelet Response On Aspirin and Correlation With HDP (Hypertensive Disorders of Pregnancy)
NCT04295850
Low Dose Aspirin for Preterm Preeclampsia Preventionmg/day Dose in High-risk Patients
NCT05514847
Effect of Low Dose Aspirin on Birthweight in Twins: The GAP Trial.
NCT02280031
Antenatal Platelet Response on Aspirin: a Pharmacokinetic Study Through Pregnancy
NCT04645004
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Placental dysfunction leading to early onset FGR is characterized by changes to the blood vessels of the placenta, leading to a decline in the amount of blood flow to the placenta. The arteries that run in the umbilical cord of the fetus (umbilical arteries) are important for nutrient exchange between the fetal and placental circulation. Many fetuses with early onset FGR have elevated resistance in the blood vessels entering the placenta. This results in decreased blood flow in the umbilical artery (UA). The blood flow in the umbilical artery is evaluated by a specialized ultrasound technique called Doppler ultrasound. Doppler ultrasound of the umbilical arteries examines the blood flow to see if there is evidence of abnormal blood flow into the placenta. When the amount of blood flow at the end of every pulse decreases, it is classified as elevated UA blood flow resistance. When the blood flow briefly pauses at the end of each pulse, this is called absent end-diastolic velocity (AEDV) or UA AEDV. When the blood flow reverses at the end of each pulse, this is called reversed end-diastolic velocity (UA REDV). In fetuses with elevated UA blood flow, the placenta can usually supply enough nutrients and oxygen for at least 9 weeks. After that time, delivery is typically required. The worsening of blood flow to UA AEDV, or even UA REDV, increases the risk for fetal deterioration and preterm birth within the next 2-6 weeks. Approximately, 80% of early onset FGR fetuses progress to UA AEDV, or even UA REDV, and then require delivery by 32 weeks. There is no treatment that can stop this progression which is of critical importance in determining how much time is left for the fetus before delivery will be necessary.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
ASA Group
Receives standard of care and intervention.
Aspirin
Two tablets daily with dinner
SOC Group
Receives standard of care (SOC), only
No interventions assigned to this group
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Aspirin
Two tablets daily with dinner
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Gestational age between 220/7 to 300/7 weeks
* Fetal abdominal circumference \< 10th percentile
* Umbilical artery Doppler index elevation \> 95th percentile
* Forward umbilical artery end-diastolic flow
* Able to understand purpose, risks/benefits, and voluntary nature of study participant
Exclusion Criteria
* Currently taking 81 mg aspirin
* Maternal contraindication to aspirin treatment including allergy
* Active vaginal bleeding
* Presence of any physical fetal anomaly
* Fetal viral infection if diagnosed by the appropriate diagnostic test
* Fetal chromosomal abnormalities if diagnosed by invasive fetal testing
* Need for imminent delivery
18 Years
FEMALE
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Johns Hopkins University
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Ahmet A Baschat
Role: PRINCIPAL_INVESTIGATOR
Johns Hopkins University
Ashi R Daftary, MD
Role: PRINCIPAL_INVESTIGATOR
Allegheny Health Network
References
Explore related publications, articles, or registry entries linked to this study.
Khong TY, Mooney EE, Ariel I, Balmus NC, Boyd TK, Brundler MA, Derricott H, Evans MJ, Faye-Petersen OM, Gillan JE, Heazell AE, Heller DS, Jacques SM, Keating S, Kelehan P, Maes A, McKay EM, Morgan TK, Nikkels PG, Parks WT, Redline RW, Scheimberg I, Schoots MH, Sebire NJ, Timmer A, Turowski G, van der Voorn JP, van Lijnschoten I, Gordijn SJ. Sampling and Definitions of Placental Lesions: Amsterdam Placental Workshop Group Consensus Statement. Arch Pathol Lab Med. 2016 Jul;140(7):698-713. doi: 10.5858/arpa.2015-0225-CC. Epub 2016 May 25.
Kingdom JC, Burrell SJ, Kaufmann P. Pathology and clinical implications of abnormal umbilical artery Doppler waveforms. Ultrasound Obstet Gynecol. 1997 Apr;9(4):271-86. doi: 10.1046/j.1469-0705.1997.09040271.x. No abstract available.
Morrow RJ, Adamson SL, Bull SB, Ritchie JW. Effect of placental embolization on the umbilical arterial velocity waveform in fetal sheep. Am J Obstet Gynecol. 1989 Oct;161(4):1055-60. doi: 10.1016/0002-9378(89)90783-7.
Giles WB, Trudinger BJ, Baird PJ. Fetal umbilical artery flow velocity waveforms and placental resistance: pathological correlation. Br J Obstet Gynaecol. 1985 Jan;92(1):31-8. doi: 10.1111/j.1471-0528.1985.tb01045.x.
Jackson MR, Walsh AJ, Morrow RJ, Mullen JB, Lye SJ, Ritchie JW. Reduced placental villous tree elaboration in small-for-gestational-age pregnancies: relationship with umbilical artery Doppler waveforms. Am J Obstet Gynecol. 1995 Feb;172(2 Pt 1):518-25. doi: 10.1016/0002-9378(95)90566-9.
Redline RW, Ravishankar S. Fetal vascular malperfusion, an update. APMIS. 2018 Jul;126(7):561-569. doi: 10.1111/apm.12849.
Wilcox GR, Trudinger BJ. Fetal platelet consumption: a feature of placental insufficiency. Obstet Gynecol. 1991 Apr;77(4):616-21.
Trudinger B, Song JZ, Wu ZH, Wang J. Placental insufficiency is characterized by platelet activation in the fetus. Obstet Gynecol. 2003 May;101(5 Pt 1):975-81. doi: 10.1016/s0029-7844(03)00173-x.
Ohshige A, Yoshimura T, Maeda T, Ito M, Okamura H. Increased platelet-activating factor-acetylhydrolase activity in the umbilical venous plasma of growth-restricted fetuses. Obstet Gynecol. 1999 Feb;93(2):180-3. doi: 10.1016/s0029-7844(98)00407-4.
Sciscione AC, Bessos H, Callan N, Blakemore K, Kickler T. Indicators of platelet turnover in thrombocytopenic infants. Br J Obstet Gynaecol. 1997 Jun;104(6):743-5. doi: 10.1111/j.1471-0528.1997.tb11990.x.
Baschat AA, Gembruch U, Reiss I, Gortner L, Weiner CP, Harman CR. Absent umbilical artery end-diastolic velocity in growth-restricted fetuses: a risk factor for neonatal thrombocytopenia. Obstet Gynecol. 2000 Aug;96(2):162-6. doi: 10.1016/s0029-7844(00)00904-2.
Turan OM, Turan S, Gungor S, Berg C, Moyano D, Gembruch U, Nicolaides KH, Harman CR, Baschat AA. Progression of Doppler abnormalities in intrauterine growth restriction. Ultrasound Obstet Gynecol. 2008 Aug;32(2):160-7. doi: 10.1002/uog.5386.
Crimmins S, Desai A, Block-Abraham D, Berg C, Gembruch U, Baschat AA. A comparison of Doppler and biophysical findings between liveborn and stillborn growth-restricted fetuses. Am J Obstet Gynecol. 2014 Dec;211(6):669.e1-10. doi: 10.1016/j.ajog.2014.06.022. Epub 2014 Jun 12.
Caradeux J, Martinez-Portilla RJ, Basuki TR, Kiserud T, Figueras F. Risk of fetal death in growth-restricted fetuses with umbilical and/or ductus venosus absent or reversed end-diastolic velocities before 34 weeks of gestation: a systematic review and meta-analysis. Am J Obstet Gynecol. 2018 Feb;218(2S):S774-S782.e21. doi: 10.1016/j.ajog.2017.11.566. Epub 2017 Dec 9.
Ferrazzi E, Bozzo M, Rigano S, Bellotti M, Morabito A, Pardi G, Battaglia FC, Galan HL. Temporal sequence of abnormal Doppler changes in the peripheral and central circulatory systems of the severely growth-restricted fetus. Ultrasound Obstet Gynecol. 2002 Feb;19(2):140-6. doi: 10.1046/j.0960-7692.2002.00627.x.
Hecher K, Bilardo CM, Stigter RH, Ville Y, Hackeloer BJ, Kok HJ, Senat MV, Visser GH. Monitoring of fetuses with intrauterine growth restriction: a longitudinal study. Ultrasound Obstet Gynecol. 2001 Dec;18(6):564-70. doi: 10.1046/j.0960-7692.2001.00590.x.
Baschat AA, Gembruch U, Harman CR. The sequence of changes in Doppler and biophysical parameters as severe fetal growth restriction worsens. Ultrasound Obstet Gynecol. 2001 Dec;18(6):571-7. doi: 10.1046/j.0960-7692.2001.00591.x.
Baschat AA, Galan HL, Bhide A, Berg C, Kush ML, Oepkes D, Thilaganathan B, Gembruch U, Harman CR. Doppler and biophysical assessment in growth restricted fetuses: distribution of test results. Ultrasound Obstet Gynecol. 2006 Jan;27(1):41-47. doi: 10.1002/uog.2657.
Lees CC, Marlow N, van Wassenaer-Leemhuis A, Arabin B, Bilardo CM, Brezinka C, Calvert S, Derks JB, Diemert A, Duvekot JJ, Ferrazzi E, Frusca T, Ganzevoort W, Hecher K, Martinelli P, Ostermayer E, Papageorghiou AT, Schlembach D, Schneider KT, Thilaganathan B, Todros T, Valcamonico A, Visser GH, Wolf H; TRUFFLE study group. 2 year neurodevelopmental and intermediate perinatal outcomes in infants with very preterm fetal growth restriction (TRUFFLE): a randomised trial. Lancet. 2015 May 30;385(9983):2162-72. doi: 10.1016/S0140-6736(14)62049-3. Epub 2015 Mar 5.
Sharp A, Cornforth C, Jackson R, Harrold J, Turner MA, Kenny LC, Baker PN, Johnstone ED, Khalil A, von Dadelszen P, Papageorghiou AT, Alfirevic Z; STRIDER group. Maternal sildenafil for severe fetal growth restriction (STRIDER): a multicentre, randomised, placebo-controlled, double-blind trial. Lancet Child Adolesc Health. 2018 Feb;2(2):93-102. doi: 10.1016/S2352-4642(17)30173-6. Epub 2017 Dec 7.
Ylikorkala O, Makila UM, Kaapa P, Viinikka L. Maternal ingestion of acetylsalicylic acid inhibits fetal and neonatal prostacyclin and thromboxane in humans. Am J Obstet Gynecol. 1986 Aug;155(2):345-9. doi: 10.1016/0002-9378(86)90823-9.
Parker CR Jr, Hauth JC, Goldenberg RL, Cooper RL, Dubard MB. Umbilical cord serum levels of thromboxane B2 in term infants of women who participated in a placebo-controlled trial of low-dose aspirin. J Matern Fetal Med. 2000 Jul-Aug;9(4):209-15. doi: 10.1002/1520-6661(200007/08)9:43.0.CO;2-S.
Trudinger BJ, Cook CM, Thompson RS, Giles WB, Connelly A. Low-dose aspirin therapy improves fetal weight in umbilical placental insufficiency. Am J Obstet Gynecol. 1988 Sep;159(3):681-5. doi: 10.1016/s0002-9378(88)80034-6.
Newnham JP, Godfrey M, Walters BJ, Phillips J, Evans SF. Low dose aspirin for the treatment of fetal growth restriction: a randomized controlled trial. Aust N Z J Obstet Gynaecol. 1995 Nov;35(4):370-4. doi: 10.1111/j.1479-828x.1995.tb02144.x.
McCowan LM, Harding J, Roberts A, Barker S, Ford C, Stewart A. Administration of low-dose aspirin to mothers with small for gestational age fetuses and abnormal umbilical Doppler studies to increase birthweight: a randomised double-blind controlled trial. Br J Obstet Gynaecol. 1999 Jul;106(7):647-51. doi: 10.1111/j.1471-0528.1999.tb08362.x.
Ali MK, Abbas AM, Yosef AH, Bahloul M. The effect of low-dose aspirin on fetal weight of idiopathic asymmetrically intrauterine growth restricted fetuses with abnormal umbilical artery Doppler indices: a randomized clinical trial. J Matern Fetal Neonatal Med. 2018 Oct;31(19):2611-2616. doi: 10.1080/14767058.2017.1350160. Epub 2017 Jul 11.
Gordijn SJ, Beune IM, Thilaganathan B, Papageorghiou A, Baschat AA, Baker PN, Silver RM, Wynia K, Ganzevoort W. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol. 2016 Sep;48(3):333-9. doi: 10.1002/uog.15884.
Baschat AA, Cosmi E, Bilardo CM, Wolf H, Berg C, Rigano S, Germer U, Moyano D, Turan S, Hartung J, Bhide A, Muller T, Bower S, Nicolaides KH, Thilaganathan B, Gembruch U, Ferrazzi E, Hecher K, Galan HL, Harman CR. Predictors of neonatal outcome in early-onset placental dysfunction. Obstet Gynecol. 2007 Feb;109(2 Pt 1):253-61. doi: 10.1097/01.AOG.0000253215.79121.75.
Sharp A, Jackson R, Cornforth C, Harrold J, Turner MA, Kenny L, Baker PN, Johnstone ED, Khalil A, von Dadelszen P, Papageorghiou AT, Alfirevic Z. A prediction model for short-term neonatal outcomes in severe early-onset fetal growth restriction. Eur J Obstet Gynecol Reprod Biol. 2019 Oct;241:109-118. doi: 10.1016/j.ejogrb.2019.08.007. Epub 2019 Aug 16.
Baschat AA. Neurodevelopment following fetal growth restriction and its relationship with antepartum parameters of placental dysfunction. Ultrasound Obstet Gynecol. 2011 May;37(5):501-14. doi: 10.1002/uog.9008.
Pardey J, Moulden M, Redman CW. A computer system for the numerical analysis of nonstress tests. Am J Obstet Gynecol. 2002 May;186(5):1095-103. doi: 10.1067/mob.2002.122447.
Baschat AA, Kush M, Berg C, Gembruch U, Nicolaides KH, Harman CR, Turan OM. Hematologic profile of neonates with growth restriction is associated with rate and degree of prenatal Doppler deterioration. Ultrasound Obstet Gynecol. 2013 Jan;41(1):66-72. doi: 10.1002/uog.12322. Epub 2012 Dec 14.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
IRB00259253
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.