Ataxia-telangiectasia: Treating Mitochondrial Dysfunction With a Novel Form of Anaplerosis
NCT ID: NCT04513002
Last Updated: 2023-07-20
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
PHASE2
30 participants
INTERVENTIONAL
2022-03-15
2023-07-10
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Primary endpoint: The percent cell death induced by glucose deprivation in cell culture. Secondary endpoints include: Scales for assessment and rating of ataxia, International Cooperative Ataxia Rating Scale, Ataxia Telangiectasia Neurological Examination Scale Toolkit, speech and language assessment, EyeSeeCam assessment, MRI lung imaging, Lung function, Upper respiratory microbiome, Faecal microbiome, Survival and inflammatory phenotype of airway epithelial cells, macrophages and in serum, Metabolomic biomarker discovery in serum and measurement of neuroflament light chain.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
MBM-01 (Tempol) for the Treatment of Ataxia Telangiectasia
NCT04887311
Safety and Efficacy Study of A0001 in Patients With the A3243G Mitochondrial DNA Point Mutation
NCT01074359
Randomized Double-Blind Placebo-Controlled Adaptive Design Trial Of Intrathecally Administered Autologous Mesenchymal Stem Cells In Multiple System Atrophy
NCT05167721
Phase 1 Dose Escalation and PK Study of Cu(II)ATSM in ALS/MND
NCT02870634
Explore Neuroprotective Effect of Lipoic Acid in Amyotrophic Lateral Sclerosis
NCT04518540
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
A-T is due to a genetic defect that results in a defective serine/threonine protein kinase, known as ATM. Normally, ATM, plays a central role in protecting the genome against damage. It is increasingly evident that ATM protects cells against oxidative stress. This protein is also present outside the nucleus, where it is activated by oxidative stress through a separate mechanism from DNA damage, providing an explanation why anti-oxidants have a protective role in A-T cells in culture and in animal models. From these and other studies, it is evident that mitochondrial abnormalities characterise ATM and it has been suggested that A-T should be considered, at least in part, as a mitochondrial disease. The Investigators have added substance to that claim by showing that ATM-deficient (B3) cells are exquisitely sensitive to inhibition of glycolysis by glucose deprivation, compared to controls (HBEC). The investigators have also shown this increased sensitivity to nutrient deprivation for primary epithelial cells from patients and in immortalised patient cells. Together these data point to a reduced capacity of A-T mitochondria to support energy metabolism and provide additional evidence for a mitochondrial defect in A-T cells. The investigators have recently demonstrated that this hypersensitivity to glucose deprivation can be explained by a novel mechanism involving defective signalling between the ER and the mitochondrion. The investigators demonstrated that this was caused by defective assembly of the VDAC1-GRP75-IP3R1 calcium channel and less ER-mitochondria contact points as determined by transmission electron microscopy. This in turn resulted in reduced calcium release from the ER and less transfer to mitochondria providing further evidence for mitochondrial dysfunction in A-T cells.
The investigators selected triheptanoin, a highly purified, synthetic medium odd-chain triglyceride that is catabolized to heptanoate and can traverse the mitochondrial membrane without the carnitine carrier. Free heptanoate is then metabolized by the medium chain fatty acid oxidation enzymes to yield both acetyl CoA and propionyl CoA that act as anaplerotics to replenish the TCA cycle and enhance energy metabolism by providing NADPH and generating ATP. The investigators demonstrated that heptanoate partially corrects the extreme sensitivity to glycolysis inhibition in both the ATM-deficient cell line as well as in primary epithelial cells from a patient with A-T. Excitingly, heptanoate also corrected all of the defects in ER-mitochondrial signalling including calcium uptake into mitochondria. Based on the importance of mitochondrial dysfunction in the A-T phenotype and our results revealing correction of mitochondrial function by heptanoate, the investigators consider that triheptanoin has excellent potential in correcting many aspects of the A-T phenotype including the progressive neurodegenerative phenotype.
Triheptanoin has been used for over 15 years to treat LC-FAOD, with demonstrated improvements in cardiac function and reductions in rhabdomyolysis episodes. Triheptanoin and heptanoate are known to protect against cell death in experimental conditions largely characterised by oxidative stress, such as stroke and motor neurone disease, adult polyglucosan body disease, alternating hemiplegia of childhood, Glucose-1 transporter deficiency, and mouse models and humans with epilepsy. Heptanoate protects cultured neurons against H2O2-induced cell death. Collectively these studies demonstrate that triheptanoin is well tolerated and is effective in treating a range of neurological conditions associated with neuronal energy deficiency.
Seamless Phase II to Phase III go/no-go criteria Interim monitoring for the intervention program in the A-T2020/01 trial will occur at the times of the two interim analyses (first, when the study cohort has completed the initial 2 months treatment, and second, after 6 months treatment when Group One has completed 2 months of the 35% dose). A blinded report will be presented to the iDSMB containing pertinent descriptive statistics of the groups, a standard between-group comparison for the primary and secondary outcomes, and a Bayesian estimation of the (posterior) probability that each of the three intervention groups is superior for the primary outcomes. The information to be presented to the iDSMB will be agreed with the iDSMB prior to the first iDSMB meeting, and will be updated at the time of the iDSMB meetings. Data will be presented to the iDSMB in a blind fashion, but the iDSMB can request unblinded data to confirm or ratify any reported interim results. The iDSMB may however make a recommendation about stopping current interventions if they show poor promise or futility.
The primary endpoints for interim iDSMB reports are the percent cell death induced by glucose deprivation in cell culture, and reversal/correction of their abnormal mitochondrial profile in primary epithelial cells resulting in cell death over the treatment period.
Secondary scales clinical neurological assessments assist formulating the go/no-go criteria and will include: SARA and ICARS. SARA is a validated cerebellar ataxia tool, measuring gait, stance, sitting, speech, finger-chase test, finger nose-test, fast alternating movements and heel-shin test. It has eight categories with accumulative score ranging from 0 (no ataxia) to 40 (most severe ataxia); Gait (0-8 points), Stance (0-6 points), Sitting (0-4 points), Speech disturbance (0-6 points), Finger chase (0-4 points), Nose-finger test (0-4 points), Fast alternating hand movement (0-4 points), Heel-shin slide (0-4 points). ICARS is a scale recorded out of 100 with 19 items and 4 subscales and has been used in A-T. Disorders rated as subscales within the ICARS are: Postural and gait disturbances, (7 items, 0-34 points) Limb Ataxia (7 items, 0-52 points), Dysarthria (2 items, 0-8 points), and Oculomotor disorders (3 items, 0-6 points). Minimum Score: 0 Maximum score: 100.
go/no-go triggers
go triggers Seamless progress from Phase II to Phase III will be triggered under the following pre-set parameters;
* If clinically or statistically significant improvement in the primary study outcome is observed in combination with a measured improvement of at least ½ standard deviation in key clinical scales which includes either;
* significant improvement in total combined scores from the SARA and ICARS scales.
* And/or significant improvements any aspects of the SARA and ICARS scales individually, especially pertaining to; Postural and gait improvements, Speech disturbance, Improved fine motor skills, Fine motor disturbance, Kinetic functions
No-go triggers Seamless progress from Phase II to Phase III will not occur under the following pre-set parameters;
* Adverse events
* If no clinically significant improvement in the primary study outcome is observed
* If a clinically significant improvement in the primary study outcome occurs without any improvements in key secondary scales specifically the SARA and ICARS.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
2. Secondary objectives
* Determine to what extent the beneficial effects of triheptanoin on epithelial cells in culture translate to clinical efficacy in patients with A-T. Clinical endpoints will include ataxia rating; MRI imaging; lung function; eye movement changes and speech assessment.
* Provide validation of our primary and secondary endpoints to plan a phase 3 trial and form the basis of future trials.
HEALTH_SERVICES_RESEARCH
QUADRUPLE
Participants will be randomised (RandoWeb) into one of the following three groups on a 1:1 ratio:
1. Group 1: 10%, 20%, 35%, 35%, 35%,35%.
2. Group 2: placebo, 10%, 20%, 35%, 35%,35%.
3. Group 3; placebo, placebo, 10%, 20%, 35%,35%.
Our study pharmacist will ensure the groups are blinded in terms of dose increases, volumes, colour and taste of liquid dispensed in triheptanoin and placebo (medium chain triglyceride oil).
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Group 1: Triheptanoin and no Placebo
Parallel group, placebo-controlled, dose-escalation each 2 months for 12 months. Dose based on percent (%) of calculated caloric intake.
Thirty participants will be randomised in blocks on a 1:1:1 ratio into one of three groups.
Group 1: 10%, 20%, 35%, 35%, 35% (no placebo). Group 2: placebo, 10%, 20%, 35%, 35% Group 3: placebo, placebo, 10%, 20%, 35%
Triheptanoin
Triheptanoin is a highly purified, synthetic medium odd-chain triglyceride that is catabolized to heptanoate.
Group 2: Placebo and Triheptanoin
Parallel group, placebo-controlled, dose-escalation each 2 months for 12 months. Dose based on percent (%) of calculated caloric intake.
Thirty participants will be randomised in blocks on a 1:1:1 ratio into one of three groups.
Group 1: 10%, 20%, 35%, 35%, 35% (no placebo). Group 2: placebo, 10%, 20%, 35%, 35% Group 3: placebo, placebo, 10%, 20%, 35%
Triheptanoin
Triheptanoin is a highly purified, synthetic medium odd-chain triglyceride that is catabolized to heptanoate.
Group 3: Placebo, Placebo and Triheptanoin
Parallel group, placebo-controlled, dose-escalation each 2 months for 12 months. Dose based on percent (%) of calculated caloric intake.
Thirty participants will be randomised in blocks on a 1:1:1 ratio into one of three groups.
Group 1: 10%, 20%, 35%, 35%, 35% (no placebo). Group 2: placebo, 10%, 20%, 35%, 35% Group 3: placebo, placebo, 10%, 20%, 35%
Triheptanoin
Triheptanoin is a highly purified, synthetic medium odd-chain triglyceride that is catabolized to heptanoate.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Triheptanoin
Triheptanoin is a highly purified, synthetic medium odd-chain triglyceride that is catabolized to heptanoate.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Patients who are able to undertake the study procedures,
* Families who are able to comply with the protocol for its duration and who provide informed patient assent and consent signed and dated by parent/legal guardian or adult participant according to local regulations.
Exclusion Criteria
* Patients who have been in another randomised clinical intervention trial where the use of investigational medicinal product within 3 months or 5 half-lives, whichever is longer, before study enrolment
* Taking off label mediations or nutritional supplements that the PI consider would impact participant's safe participation.
* Patients who are pregnant and/or lactating, planning a pregnancy during the study. Contraception must be used for sexually active male and female participants
* Intestinal Malabsorption secondary to Pancreatic Insufficiency
* Liver enzymes (alanine aminotransferase \[ALT\]/aspartate aminotransferase \[AST\]) or total bilirubin \> 2 x the upper limit of normal at the time of screening.
* Renal insufficiency as defined by estimated glomerular filtration rate (eGFR) \< 30 mL/min/1.73m2 at the screening visit.
* Any comorbid medical condition that in the assessment of the PI that would impact participant's safe participation (e.g. active cancer requiring treatment)
* Evidence of dysphagia that places subject at risk of aspiration if orally fed.
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
National Health and Medical Research Council, Australia
OTHER
The University of Queensland
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
David Coman, MBBS FRACP
Role: PRINCIPAL_INVESTIGATOR
Queensland Children's Hospital
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Queensland Children's Hospital
Brisbane, Queensland, Australia
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT. ATM activation by oxidative stress. Science. 2010 Oct 22;330(6003):517-21. doi: 10.1126/science.1192912.
Zannolli R, Buoni S, Betti G, Salvucci S, Plebani A, Soresina A, Pietrogrande MC, Martino S, Leuzzi V, Finocchi A, Micheli R, Rossi LN, Brusco A, Misiani F, Fois A, Hayek J, Kelly C, Chessa L. A randomized trial of oral betamethasone to reduce ataxia symptoms in ataxia telangiectasia. Mov Disord. 2012 Sep 1;27(10):1312-6. doi: 10.1002/mds.25126. Epub 2012 Aug 23.
Gueven N, Luff J, Peng C, Hosokawa K, Bottle SE, Lavin MF. Dramatic extension of tumor latency and correction of neurobehavioral phenotype in Atm-mutant mice with a nitroxide antioxidant. Free Radic Biol Med. 2006 Sep 15;41(6):992-1000. doi: 10.1016/j.freeradbiomed.2006.06.018. Epub 2006 Jul 4.
Valentin-Vega YA, Maclean KH, Tait-Mulder J, Milasta S, Steeves M, Dorsey FC, Cleveland JL, Green DR, Kastan MB. Mitochondrial dysfunction in ataxia-telangiectasia. Blood. 2012 Feb 9;119(6):1490-500. doi: 10.1182/blood-2011-08-373639. Epub 2011 Dec 5.
Gillingham MB, Heitner SB, Martin J, Rose S, Goldstein A, El-Gharbawy AH, Deward S, Lasarev MR, Pollaro J, DeLany JP, Burchill LJ, Goodpaster B, Shoemaker J, Matern D, Harding CO, Vockley J. Triheptanoin versus trioctanoin for long-chain fatty acid oxidation disorders: a double blinded, randomized controlled trial. J Inherit Metab Dis. 2017 Nov;40(6):831-843. doi: 10.1007/s10545-017-0085-8. Epub 2017 Sep 4.
Roe CR, Brunengraber H. Anaplerotic treatment of long-chain fat oxidation disorders with triheptanoin: Review of 15 years Experience. Mol Genet Metab. 2015 Dec;116(4):260-8. doi: 10.1016/j.ymgme.2015.10.005. Epub 2015 Oct 24.
Roe CR, Mochel F. Anaplerotic diet therapy in inherited metabolic disease: therapeutic potential. J Inherit Metab Dis. 2006 Apr-Jun;29(2-3):332-40. doi: 10.1007/s10545-006-0290-3.
Schiffmann R, Wallace ME, Rinaldi D, Ledoux I, Luton MP, Coleman S, Akman HO, Martin K, Hogrel JY, Blankenship D, Turner J, Mochel F. A double-blind, placebo-controlled trial of triheptanoin in adult polyglucosan body disease and open-label, long-term outcome. J Inherit Metab Dis. 2018 Sep;41(5):877-883. doi: 10.1007/s10545-017-0103-x. Epub 2017 Nov 6.
Hainque E, Caillet S, Leroy S, Flamand-Roze C, Adanyeguh I, Charbonnier-Beaupel F, Retail M, Le Toullec B, Atencio M, Rivaud-Pechoux S, Brochard V, Habarou F, Ottolenghi C, Cormier F, Meneret A, Ruiz M, Doulazmi M, Roubergue A, Corvol JC, Vidailhet M, Mochel F, Roze E. A randomized, controlled, double-blind, crossover trial of triheptanoin in alternating hemiplegia of childhood. Orphanet J Rare Dis. 2017 Oct 2;12(1):160. doi: 10.1186/s13023-017-0713-2.
Hainque E, Gras D, Meneret A, Atencio M, Luton MP, Barbier M, Doulazmi M, Habarou F, Ottolenghi C, Roze E, Mochel F. Long-term follow-up in an open-label trial of triheptanoin in GLUT1 deficiency syndrome: a sustained dramatic effect. J Neurol Neurosurg Psychiatry. 2019 Nov;90(11):1291-1293. doi: 10.1136/jnnp-2018-320283. Epub 2019 Apr 4. No abstract available.
Hadera MG, Smeland OB, McDonald TS, Tan KN, Sonnewald U, Borges K. Triheptanoin partially restores levels of tricarboxylic acid cycle intermediates in the mouse pilocarpine model of epilepsy. J Neurochem. 2014 Apr;129(1):107-19. doi: 10.1111/jnc.12610. Epub 2013 Dec 2.
Hadera MG, McDonald T, Smeland OB, Meisingset TW, Eloqayli H, Jaradat S, Borges K, Sonnewald U. Modification of Astrocyte Metabolism as an Approach to the Treatment of Epilepsy: Triheptanoin and Acetyl-L-Carnitine. Neurochem Res. 2016 Feb;41(1-2):86-95. doi: 10.1007/s11064-015-1728-5. Epub 2015 Oct 3.
Yeo AJ, Henningham A, Fantino E, Galbraith S, Krause L, Wainwright CE, Sly PD, Lavin MF. Increased susceptibility of airway epithelial cells from ataxia-telangiectasia to S. pneumoniae infection due to oxidative damage and impaired innate immunity. Sci Rep. 2019 Feb 22;9(1):2627. doi: 10.1038/s41598-019-38901-3.
McGrath-Morrow SA, Collaco JM, Detrick B, Lederman HM. Serum Interleukin-6 Levels and Pulmonary Function in Ataxia-Telangiectasia. J Pediatr. 2016 Apr;171:256-61.e1. doi: 10.1016/j.jpeds.2016.01.002. Epub 2016 Feb 2.
McGrath-Morrow SA, Ndeh R, Collaco JM, Rothblum-Oviatt C, Wright J, O'Reilly MA, Singer BD, Lederman HM. Inflammation and transcriptional responses of peripheral blood mononuclear cells in classic ataxia telangiectasia. PLoS One. 2018 Dec 26;13(12):e0209496. doi: 10.1371/journal.pone.0209496. eCollection 2018.
Ross LJ, Capra S, Baguley B, Sinclair K, Munro K, Lewindon P, Lavin M. Nutritional status of patients with ataxia-telangiectasia: A case for early and ongoing nutrition support and intervention. J Paediatr Child Health. 2015 Aug;51(8):802-7. doi: 10.1111/jpc.12828. Epub 2015 Feb 6.
Morita DA, Glauser TA, Modi AC. Development and validation of the Pediatric Epilepsy Side Effects Questionnaire. Neurology. 2012 Sep 18;79(12):1252-8. doi: 10.1212/WNL.0b013e3182635b87. Epub 2012 Aug 8.
Yeo AJ, Chong KL, Gatei M, Zou D, Stewart R, Withey S, Wolvetang E, Parton RG, Brown AD, Kastan MB, Coman D, Lavin MF. Impaired endoplasmic reticulum-mitochondrial signaling in ataxia-telangiectasia. iScience. 2020 Dec 23;24(1):101972. doi: 10.1016/j.isci.2020.101972. eCollection 2021 Jan 22.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
A-T2020/01
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.