Impact of Ocrelizumab on Cerebrospinal Fluid Biomarkers at Multiple Sclerosis Onset
NCT ID: NCT04466150
Last Updated: 2025-01-08
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
ACTIVE_NOT_RECRUITING
PHASE4
30 participants
INTERVENTIONAL
2020-08-30
2027-07-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Evaluating the Efficacy and Safety of Transitioning Patients From Natalizumab to Ocrelizumab
NCT03157830
Symptom Burden in Patients Treated With Ocrelizumab for Multiple Sclerosis
NCT04855617
Ocrelizumab Effects on the Metabolome in MS
NCT03873389
Effect of Ocrelizumab on Neuroinflammation in Multiple Sclerosis as Measured by 11C-PBR28 MR-PET Imaging of Microglia Activation
NCT04230174
A Study To Determine The Effect Of Ocrelizumab On Leptomeningeal Inflammation In Multiple Sclerosis
NCT05208840
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Investigators hope data that will provide a foundation for further studies that treating relapsing MS patients at clinical onset (using a B-cell depleting therapy) may improve longer-term outcomes.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NON_RANDOMIZED
PARALLEL
By nesting this ocrelizumab interventional treatment arm within an observational study, the investigators will be able to compare treatment with ocrelizumab to usual care for patients who are matched for the same disease duration. Because the same clinical and biomarker assessments will be acquired for both the ocrelizumab interventional arm and the usual care observational cohort, this study will allow direct comparison of ocrelizumab with a usual care control group.
BASIC_SCIENCE
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Ocrelizumab treated
Participants age 18-50 with a first clinical presentation of MS or high-risk CIS diagnosed within 90 days of screening will be treated with ocrelizumab (300 mg IV x 2 doses given 2 weeks apart) at disease origin and with maintenance ocrelizumab 600 mg every 6 months through 30 months with a final study visit at 3 years
Ocrelizumab
open label biomarker study
Observational study cohort
Subjects enrolled into an observational study matched for the same disease duration and who are either untreated or treated with alternate MS disease modifying therapies will serve as a parallel reference group
No interventions assigned to this group
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Ocrelizumab
open label biomarker study
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Signed Consent Form
* High-risk clinically isolated syndrome or relapsing MS Diagnosis (based on 2017 International Panel Criteria)
* Age 18-50 inclusive
* Screening within 90 days of first clinical demyelinating event typical of MS with 1 or more inactive lesions typical of MS
* No prior MS disease modifying therapy
* No corticosteroids within 7 days of first ocrelizumab treatment
* EDSS \< 4.0
* A negative urine or serum pregnancy test must be available for premenopausal women and for women \<12 months after the onset of menopause, unless they have undergone surgical sterilization.
* Women of childbearing potential must agree to remain abstinent (refrain from heterosexual intercourse) or use one method of contraception with a failure rate of \<1% per year or a barrier method supplemented with spermicide. Contraception must continue for the duration of study treatment and for at least 24 weeks after the last dose of study treatment. A woman is considered to be of childbearing potential if she is postmenarcheal, has not reached a postmenopausal state (≥ 12 continuous months of amenorrhea with no identified cause of other than menopause), and has not undergone surgical sterilization (removal of the ovaries and/or uterus).
* Examples of contraceptive methods with a failure rate of \<1% per year include bilateral tube ligation, male sterilization, established hormonal contraceptives that inhibit ovulation, hormone-releasing intrauterine devices, and copper intrauterine devices.
* The reliability of sexual abstinence should be evaluated in relation to the duration of the clinical trial and the preferred and usual lifestyle of the patient. Periodic abstinence and withdrawal are not acceptable methods of contraception.
* Examples of barrier methods supplemented with the use of spermicide include male or female condom, cap, diaphragm, or sponge.
Exclusion Criteria
* Pregnancy, lactation, or intention to become pregnant during the study
* Progressive MS (primary or secondary)
* Disease other than MS to explain the first demyelinating event; including AQP4 IgG seropositivity
* Unwilling or unsafe to proceed with CSF exams based on coagulopathy or anatomy or other considerations in the judgment of the study investigator
* Unwilling or unsafe to proceed with MRI
* Active hepatitis B virus infection
* Untreated latent or active tuberculosis
* Active hepatitis C virus infection
* HIV infection
* Hypersensitivity to trial medications
* History of life-threatening infusion reaction to MAbs
18 Years
50 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Genentech, Inc.
INDUSTRY
Valhalla Foundation
OTHER
University of California, San Francisco
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Bruce Cree, MD, PhD, MAS
Role: PRINCIPAL_INVESTIGATOR
University of California, San Francisco
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
University of California San Francisco
San Francisco, California, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Lassmann H, Bradl M. Multiple sclerosis: experimental models and reality. Acta Neuropathol. 2017 Feb;133(2):223-244. doi: 10.1007/s00401-016-1631-4. Epub 2016 Oct 20.
Bruck W, Gold R, Lund BT, Oreja-Guevara C, Prat A, Spencer CM, Steinman L, Tintore M, Vollmer TL, Weber MS, Weiner LP, Ziemssen T, Zamvil SS. Therapeutic decisions in multiple sclerosis: moving beyond efficacy. JAMA Neurol. 2013 Oct;70(10):1315-24. doi: 10.1001/jamaneurol.2013.3510.
Longbrake EE, Cross AH. Effect of Multiple Sclerosis Disease-Modifying Therapies on B Cells and Humoral Immunity. JAMA Neurol. 2016 Feb;73(2):219-25. doi: 10.1001/jamaneurol.2015.3977.
van Oosten BW, Lai M, Hodgkinson S, Barkhof F, Miller DH, Moseley IF, Thompson AJ, Rudge P, McDougall A, McLeod JG, Ader HJ, Polman CH. Treatment of multiple sclerosis with the monoclonal anti-CD4 antibody cM-T412: results of a randomized, double-blind, placebo-controlled, MR-monitored phase II trial. Neurology. 1997 Aug;49(2):351-7. doi: 10.1212/wnl.49.2.351.
Li R, Rezk A, Miyazaki Y, Hilgenberg E, Touil H, Shen P, Moore CS, Michel L, Althekair F, Rajasekharan S, Gommerman JL, Prat A, Fillatreau S, Bar-Or A; Canadian B cells in MS Team. Proinflammatory GM-CSF-producing B cells in multiple sclerosis and B cell depletion therapy. Sci Transl Med. 2015 Oct 21;7(310):310ra166. doi: 10.1126/scitranslmed.aab4176.
Dobson R, Ramagopalan S, Davis A, Giovannoni G. Cerebrospinal fluid oligoclonal bands in multiple sclerosis and clinically isolated syndromes: a meta-analysis of prevalence, prognosis and effect of latitude. J Neurol Neurosurg Psychiatry. 2013 Aug;84(8):909-14. doi: 10.1136/jnnp-2012-304695. Epub 2013 Feb 21.
Howell OW, Reeves CA, Nicholas R, Carassiti D, Radotra B, Gentleman SM, Serafini B, Aloisi F, Roncaroli F, Magliozzi R, Reynolds R. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain. 2011 Sep;134(Pt 9):2755-71. doi: 10.1093/brain/awr182. Epub 2011 Aug 11.
Magliozzi R, Howell OW, Reeves C, Roncaroli F, Nicholas R, Serafini B, Aloisi F, Reynolds R. A Gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann Neurol. 2010 Oct;68(4):477-93. doi: 10.1002/ana.22230.
Stashenko P, Nadler LM, Hardy R, Schlossman SF. Characterization of a human B lymphocyte-specific antigen. J Immunol. 1980 Oct;125(4):1678-85.
Krumbholz M, Derfuss T, Hohlfeld R, Meinl E. B cells and antibodies in multiple sclerosis pathogenesis and therapy. Nat Rev Neurol. 2012 Nov 5;8(11):613-23. doi: 10.1038/nrneurol.2012.203. Epub 2012 Oct 9.
Leandro MJ, Cambridge G, Ehrenstein MR, Edwards JC. Reconstitution of peripheral blood B cells after depletion with rituximab in patients with rheumatoid arthritis. Arthritis Rheum. 2006 Feb;54(2):613-20. doi: 10.1002/art.21617.
Salzer J, Svenningsson R, Alping P, Novakova L, Bjorck A, Fink K, Islam-Jakobsson P, Malmestrom C, Axelsson M, Vagberg M, Sundstrom P, Lycke J, Piehl F, Svenningsson A. Rituximab in multiple sclerosis: A retrospective observational study on safety and efficacy. Neurology. 2016 Nov 15;87(20):2074-2081. doi: 10.1212/WNL.0000000000003331. Epub 2016 Oct 19.
Chamberlain N, Massad C, Oe T, Cantaert T, Herold KC, Meffre E. Rituximab does not reset defective early B cell tolerance checkpoints. J Clin Invest. 2016 Jan;126(1):282-7. doi: 10.1172/JCI83840. Epub 2015 Dec 7.
Cree BA, Lamb S, Morgan K, Chen A, Waubant E, Genain C. An open label study of the effects of rituximab in neuromyelitis optica. Neurology. 2005 Apr 12;64(7):1270-2. doi: 10.1212/01.WNL.0000159399.81861.D5.
Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, Bar-Or A, Panzara M, Sarkar N, Agarwal S, Langer-Gould A, Smith CH; HERMES Trial Group. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med. 2008 Feb 14;358(7):676-88. doi: 10.1056/NEJMoa0706383.
Bar-Or A, Calabresi PA, Arnold D, Markowitz C, Shafer S, Kasper LH, Waubant E, Gazda S, Fox RJ, Panzara M, Sarkar N, Agarwal S, Smith CH. Rituximab in relapsing-remitting multiple sclerosis: a 72-week, open-label, phase I trial. Ann Neurol. 2008 Mar;63(3):395-400. doi: 10.1002/ana.21363.
Ruhstaller TW, Amsler U, Cerny T. Rituximab: active treatment of central nervous system involvement by non-Hodgkin's lymphoma? Ann Oncol. 2000 Mar;11(3):374-5. doi: 10.1023/a:1008371602708. No abstract available.
Naismith RT, Piccio L, Lyons JA, Lauber J, Tutlam NT, Parks BJ, Trinkaus K, Song SK, Cross AH. Rituximab add-on therapy for breakthrough relapsing multiple sclerosis: a 52-week phase II trial. Neurology. 2010 Jun 8;74(23):1860-7. doi: 10.1212/WNL.0b013e3181e24373.
Alping P, Frisell T, Novakova L, Islam-Jakobsson P, Salzer J, Bjorck A, Axelsson M, Malmestrom C, Fink K, Lycke J, Svenningsson A, Piehl F. Rituximab versus fingolimod after natalizumab in multiple sclerosis patients. Ann Neurol. 2016 Jun;79(6):950-8. doi: 10.1002/ana.24651. Epub 2016 Apr 20.
Rommer PS, Dorner T, Freivogel K, Haas J, Kieseier BC, Kumpfel T, Paul F, Proft F, Schulze-Koops H, Schmidt E, Wiendl H, Ziemann U, Zettl UK; GRAID investigators. Safety and Clinical Outcomes of Rituximab Treatment in Patients with Multiple Sclerosis and Neuromyelitis Optica: Experience from a National Online Registry (GRAID). J Neuroimmune Pharmacol. 2016 Mar;11(1):1-8. doi: 10.1007/s11481-015-9646-5. Epub 2015 Nov 20.
Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung HP, Hemmer B, Lublin F, Montalban X, Rammohan KW, Selmaj K, Traboulsee A, Wolinsky JS, Arnold DL, Klingelschmitt G, Masterman D, Fontoura P, Belachew S, Chin P, Mairon N, Garren H, Kappos L; OPERA I and OPERA II Clinical Investigators. Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis. N Engl J Med. 2017 Jan 19;376(3):221-234. doi: 10.1056/NEJMoa1601277. Epub 2016 Dec 21.
Klein C, Lammens A, Schafer W, Georges G, Schwaiger M, Mossner E, Hopfner KP, Umana P, Niederfellner G. Epitope interactions of monoclonal antibodies targeting CD20 and their relationship to functional properties. MAbs. 2013 Jan-Feb;5(1):22-33. doi: 10.4161/mabs.22771. Epub 2012 Dec 4.
Kappos L, Li D, Calabresi PA, O'Connor P, Bar-Or A, Barkhof F, Yin M, Leppert D, Glanzman R, Tinbergen J, Hauser SL. Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet. 2011 Nov 19;378(9805):1779-87. doi: 10.1016/S0140-6736(11)61649-8. Epub 2011 Oct 31.
Sorensen PS, Lisby S, Grove R, Derosier F, Shackelford S, Havrdova E, Drulovic J, Filippi M. Safety and efficacy of ofatumumab in relapsing-remitting multiple sclerosis: a phase 2 study. Neurology. 2014 Feb 18;82(7):573-81. doi: 10.1212/WNL.0000000000000125. Epub 2014 Jan 22.
Bar-Or A, Grove RA, Austin DJ, Tolson JM, VanMeter SA, Lewis EW, Derosier FJ, Lopez MC, Kavanagh ST, Miller AE, Sorensen PS. Subcutaneous ofatumumab in patients with relapsing-remitting multiple sclerosis: The MIRROR study. Neurology. 2018 May 15;90(20):e1805-e1814. doi: 10.1212/WNL.0000000000005516. Epub 2018 Apr 25.
Weinshenker BG, Bass B, Rice GP, Noseworthy J, Carriere W, Baskerville J, Ebers GC. The natural history of multiple sclerosis: a geographically based study. I. Clinical course and disability. Brain. 1989 Feb;112 ( Pt 1):133-46. doi: 10.1093/brain/112.1.133.
Tremlett H, Zhao Y, Devonshire V; UBC Neurologists. Natural history comparisons of primary and secondary progressive multiple sclerosis reveals differences and similarities. J Neurol. 2009 Mar;256(3):374-81. doi: 10.1007/s00415-009-0039-7. Epub 2009 Mar 18.
Confavreux C, Vukusic S, Moreau T, Adeleine P. Relapses and progression of disability in multiple sclerosis. N Engl J Med. 2000 Nov 16;343(20):1430-8. doi: 10.1056/NEJM200011163432001.
Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O'Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011 Feb;69(2):292-302. doi: 10.1002/ana.22366.
Ontaneda D, Thompson AJ, Fox RJ, Cohen JA. Progressive multiple sclerosis: prospects for disease therapy, repair, and restoration of function. Lancet. 2017 Apr 1;389(10076):1357-1366. doi: 10.1016/S0140-6736(16)31320-4. Epub 2016 Nov 24.
Hawker K, O'Connor P, Freedman MS, Calabresi PA, Antel J, Simon J, Hauser S, Waubant E, Vollmer T, Panitch H, Zhang J, Chin P, Smith CH; OLYMPUS trial group. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann Neurol. 2009 Oct;66(4):460-71. doi: 10.1002/ana.21867.
Montalban X, Hauser SL, Kappos L, Arnold DL, Bar-Or A, Comi G, de Seze J, Giovannoni G, Hartung HP, Hemmer B, Lublin F, Rammohan KW, Selmaj K, Traboulsee A, Sauter A, Masterman D, Fontoura P, Belachew S, Garren H, Mairon N, Chin P, Wolinsky JS; ORATORIO Clinical Investigators. Ocrelizumab versus Placebo in Primary Progressive Multiple Sclerosis. N Engl J Med. 2017 Jan 19;376(3):209-220. doi: 10.1056/NEJMoa1606468. Epub 2016 Dec 21.
Dyson JK, Jopson L, Ng S, Lowery M, Harwood J, Waugh S, Valappil M, McPherson S. Improving testing for hepatitis B before treatment with rituximab. Eur J Gastroenterol Hepatol. 2016 Oct;28(10):1172-8. doi: 10.1097/MEG.0000000000000689.
Lee J, Park JY, Huh KH, Kim BS, Kim MS, Kim SI, Ahn SH, Kim YS. Rituximab and hepatitis B reactivation in HBsAg-negative/anti-HBc-positive kidney transplant recipients. Nephrol Dial Transplant. 2017 May 1;32(5):906. doi: 10.1093/ndt/gfx048. No abstract available.
Seto WK, Wong DK, Chan TS, Hwang YY, Fung J, Liu KS, Gill H, Lam YF, Cheung KS, Lie AK, Lai CL, Kwong YL, Yuen MF. Association of Hepatitis B Core-Related Antigen With Hepatitis B Virus Reactivation in Occult Viral Carriers Undergoing High-Risk Immunosuppressive Therapy. Am J Gastroenterol. 2016 Dec;111(12):1788-1795. doi: 10.1038/ajg.2016.436. Epub 2016 Sep 20.
Clifford DB, Ances B, Costello C, Rosen-Schmidt S, Andersson M, Parks D, Perry A, Yerra R, Schmidt R, Alvarez E, Tyler KL. Rituximab-associated progressive multifocal leukoencephalopathy in rheumatoid arthritis. Arch Neurol. 2011 Sep;68(9):1156-64. doi: 10.1001/archneurol.2011.103. Epub 2011 May 9.
Hauser SL. The Charcot Lecture | beating MS: a story of B cells, with twists and turns. Mult Scler. 2015 Jan;21(1):8-21. doi: 10.1177/1352458514561911. Epub 2014 Dec 5.
Harding K, Williams O, Willis M, Hrastelj J, Rimmer A, Joseph F, Tomassini V, Wardle M, Pickersgill T, Robertson N, Tallantyre E. Clinical Outcomes of Escalation vs Early Intensive Disease-Modifying Therapy in Patients With Multiple Sclerosis. JAMA Neurol. 2019 May 1;76(5):536-541. doi: 10.1001/jamaneurol.2018.4905.
Brown JWL, Coles A, Horakova D, Havrdova E, Izquierdo G, Prat A, Girard M, Duquette P, Trojano M, Lugaresi A, Bergamaschi R, Grammond P, Alroughani R, Hupperts R, McCombe P, Van Pesch V, Sola P, Ferraro D, Grand'Maison F, Terzi M, Lechner-Scott J, Flechter S, Slee M, Shaygannejad V, Pucci E, Granella F, Jokubaitis V, Willis M, Rice C, Scolding N, Wilkins A, Pearson OR, Ziemssen T, Hutchinson M, Harding K, Jones J, McGuigan C, Butzkueven H, Kalincik T, Robertson N; MSBase Study Group. Association of Initial Disease-Modifying Therapy With Later Conversion to Secondary Progressive Multiple Sclerosis. JAMA. 2019 Jan 15;321(2):175-187. doi: 10.1001/jama.2018.20588.
Ontaneda D, Tallantyre EC, Raza PC, Planchon SM, Nakamura K, Miller D, Hersh C, Craner M, Bale C, Chaudhry B, Gunzler DD, Love TE, Gerry S, Coles A, Cohen JA, Evangelou N. Determining the effectiveness of early intensive versus escalation approaches for the treatment of relapsing-remitting multiple sclerosis: The DELIVER-MS study protocol. Contemp Clin Trials. 2020 Aug;95:106009. doi: 10.1016/j.cct.2020.106009. Epub 2020 Apr 19.
raditional Versus Early Aggressive Therapy for Multiple Sclerosis Trial (TREAT-MS) Johns Hopkins University NCT03500328
University of California, San Francisco MS-EPIC Team; Cree BAC, Hollenbach JA, Bove R, Kirkish G, Sacco S, Caverzasi E, Bischof A, Gundel T, Zhu AH, Papinutto N, Stern WA, Bevan C, Romeo A, Goodin DS, Gelfand JM, Graves J, Green AJ, Wilson MR, Zamvil SS, Zhao C, Gomez R, Ragan NR, Rush GQ, Barba P, Santaniello A, Baranzini SE, Oksenberg JR, Henry RG, Hauser SL. Silent progression in disease activity-free relapsing multiple sclerosis. Ann Neurol. 2019 May;85(5):653-666. doi: 10.1002/ana.25463. Epub 2019 Mar 30.
Warnke C, Stettner M, Lehmensiek V, Dehmel T, Mausberg AK, von Geldern G, Gold R, Kumpfel T, Hohlfeld R, Maurer M, Stangel M, Straeten V, Limmroth V, Weber T, Kleinschnitz C, Wattjes MP, Svenningsson A, Olsson T, Hartung HP, Hermsen D, Tumani H, Adams O, Kieseier BC. Natalizumab exerts a suppressive effect on surrogates of B cell function in blood and CSF. Mult Scler. 2015 Jul;21(8):1036-44. doi: 10.1177/1352458514556296. Epub 2014 Nov 12.
Larsson D, Akerfeldt T, Carlson K, Burman J. Intrathecal immunoglobulins and neurofilament light after autologous haematopoietic stem cell transplantation for multiple sclerosis. Mult Scler. 2020 Oct;26(11):1351-1359. doi: 10.1177/1352458519863983. Epub 2019 Jul 26.
Rejdak K, Stelmasiak Z, Grieb P. Cladribine induces long lasting oligoclonal bands disappearance in relapsing multiple sclerosis patients: 10-year observational study. Mult Scler Relat Disord. 2019 Jan;27:117-120. doi: 10.1016/j.msard.2018.10.006. Epub 2018 Oct 10.
Leist TP, Comi G, Cree BA, Coyle PK, Freedman MS, Hartung HP, Vermersch P, Casset-Semanaz F, Scaramozza M; oral cladribine for early MS (ORACLE MS) Study Group. Effect of oral cladribine on time to conversion to clinically definite multiple sclerosis in patients with a first demyelinating event (ORACLE MS): a phase 3 randomised trial. Lancet Neurol. 2014 Mar;13(3):257-67. doi: 10.1016/S1474-4422(14)70005-5. Epub 2014 Feb 4.
https://www.emdserono.com/content/dam/web/corporate/non-images/country-specifics/us/pi/mavenclad-pi.pdf
https://www.gene.com/download/pdf/ocrevus_prescribing.pdf.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
RO-IIS-2018-10828
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.