Safety and Efficacy of Allogeneic Adipose Tissue Mesenchymal Stem Cells in Diabetic Patients With Critical Limb Ischemia
NCT ID: NCT04466007
Last Updated: 2025-04-27
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
PHASE2
90 participants
INTERVENTIONAL
2021-01-11
2024-12-05
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Efficacy and Safety of Mesenchymal Stem Cell Clusters in Patients with Critical Limb Ischemia
NCT04661644
Human Adipose Derived Mesenchymal Stem Cells for Critical Limb Ischemia (CLI) in Diabetic Patients
NCT01257776
Bone Marrow Mononuclear Cells vs Mesenchymal Stem Cells in Diabetic Patients With Chronic Limb Ischemia
NCT05631444
Autologous Bone Marrow Derived Mononuclear Cells in Treating Diabetic Patients With Critical Limb Ischemia
NCT00872326
Intraarterial Infusion of Autologous Bone Marrow in Diabetic Patients With Chronic Ischemia of Lower Limbs (CLI) no Revascularization
NCT00987363
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Main valuation variable: Proportion of Adverse Events related to treatment.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
TRIPLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Control arm
0.9% physiological saline
Placebos
0,9% physiological saline
Low dose treatment arm
Low dose allogeneic mesenchymal stem cells derived from adipose tissue
Low dose allogeneic mesenchymal stromal cells
Allogeneic mesenchymal stromal cells derived from adipose tissue administered intramuscularly
High dose treatment arm
High dose allogeneic mesenchymal stem cells derived from adipose tissue
High dose allogeneic mesenchymal stromal cells
Allogeneic mesenchymal stromal cells derived from adipose tissue administered intramuscularly
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
High dose allogeneic mesenchymal stromal cells
Allogeneic mesenchymal stromal cells derived from adipose tissue administered intramuscularly
Low dose allogeneic mesenchymal stromal cells
Allogeneic mesenchymal stromal cells derived from adipose tissue administered intramuscularly
Placebos
0,9% physiological saline
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Patients of both sexes.
* Age between 40 and 90 years.
* Severe grade vascular arteriosclerosis (category RB 4 and 5 mono or bilateral).
* Impossibility of surgical or endovascular revascularization or failure in revascularization surgery performed, at least 30 days before inclusion in the study, defining failure as direct non-arrival of vessels to the plantar arch.
* Normal biochemical parameters defined by:
* Leukocytes\> 3000 / mm3
* Neutrophils\> 1500 / mm3
* Platelets\> 100,000 / mm3
* AST / ALT \<2.5x upper limit of normal
* In patients with an ischemic ulcer, it must be stable for at least 1 week.
* Patients under conventional medical treatment for CLI.
* Women of childbearing age must obtain a negative result in a urine pregnancy test performed at the time of inclusion in the study and commit to using an effective contraceptive method during their participation in the study.
* Patients who have not participated in any other clinical trial during the 3 months prior to the inclusion visit.
* Patients who sign the informed consent.
Exclusion Criteria
* CLI with tissue loss in the target member (category 6 of RB).
* Previous major amputation in the target member.
* Uncontrolled hypertension (defined as PAS\> 180 or PAD\> 110 in at least 2 determinations during the selection period).
* Patients with severe heart failure or ejection fraction less than 30%.
* Patients with a previous diagnosis of ventricular arrhythmias or unstable angina.
* Patients with septicemia.
* Patients diagnosed with deep vein thrombosis in the 3 months prior to their inclusion in the study.
* Concomitant therapy that includes hyperbaric oxygen, angiogenic agents or Cox II inhibitors.
* Contraindication to perfusion NMR.
* Proliferative retinopathy without treatment.
* Diabetic nephropathy in hemodialysis.
* Patients previously treated with cell therapy, gene therapy or growth factors in the last year.
* Concomitant disease that limits life expectancy to 1 year or that does not ensure the follow-up period.
* Patients who have suffered a stroke or myocardial infarction in the 3 months prior to the inclusion visit.
* Severe anemia (hemoglobin \<7.9g / dl) in the inclusion analysis.
* Patients with a previous diagnosis of chronic alcoholism.
* Any clinically significant anomaly detected in the Selection Period and which, in the opinion of the investigator, constitutes an impediment to the correct participation of the patient in the study or the fulfillment of the procedures established therein.
40 Years
90 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Clinica Universidad de Navarra, Universidad de Navarra
OTHER
Hospital Universitario La Paz
OTHER
Gregorio Marañón Hospital
OTHER
Hospital Clínico Universitario de Valladolid
OTHER
Hospital Universitario Virgen de la Arrixaca
OTHER
University of Salamanca
OTHER
Hospital General Universitario de Alicante
OTHER
Hospital Universitario La Fe
OTHER
Hospital Victoria Eugenia Cruz Roja Española
UNKNOWN
Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Hospital General de Alicante
Alicante, , Spain
Hospital Gregorio Marañon
Madrid, , Spain
Hospital Universitario Fundacion Jimenez Diaz
Madrid, , Spain
La Paz University Hospital
Madrid, , Spain
Hospital Clinico Universitario Virgen de la Arrixaca
Murcia, , Spain
Clinica Universidad de Navarra
Pamplona, , Spain
Hospital Universitario de Salamanca
Salamanca, , Spain
Hospital Victoria Eugenia Cruz Roja Española
Seville, , Spain
Hospital Universitario La Fe
Valencia, , Spain
Hospital de Valladolid
Valladolid, , Spain
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Garcia-Olmo D, Schwartz DA. Cumulative Evidence That Mesenchymal Stem Cells Promote Healing of Perianal Fistulas of Patients With Crohn's Disease--Going From Bench to Bedside. Gastroenterology. 2015 Oct;149(4):853-7. doi: 10.1053/j.gastro.2015.08.038. Epub 2015 Aug 24. No abstract available.
Garcia-Olmo D, Garcia-Arranz M, Herreros D, Pascual I, Peiro C, Rodriguez-Montes JA. A phase I clinical trial of the treatment of Crohn's fistula by adipose mesenchymal stem cell transplantation. Dis Colon Rectum. 2005 Jul;48(7):1416-23. doi: 10.1007/s10350-005-0052-6.
Garcia-Olmo D, Herreros D, Pascual I, Pascual JA, Del-Valle E, Zorrilla J, De-La-Quintana P, Garcia-Arranz M, Pascual M. Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial. Dis Colon Rectum. 2009 Jan;52(1):79-86. doi: 10.1007/DCR.0b013e3181973487.
Panes J, Garcia-Olmo D, Van Assche G, Colombel JF, Reinisch W, Baumgart DC, Dignass A, Nachury M, Ferrante M, Kazemi-Shirazi L, Grimaud JC, de la Portilla F, Goldin E, Richard MP, Diez MC, Tagarro I, Leselbaum A, Danese S; ADMIRE CD Study Group Collaborators. Long-term Efficacy and Safety of Stem Cell Therapy (Cx601) for Complex Perianal Fistulas in Patients With Crohn's Disease. Gastroenterology. 2018 Apr;154(5):1334-1342.e4. doi: 10.1053/j.gastro.2017.12.020. Epub 2017 Dec 24.
Panes J, Garcia-Olmo D, Van Assche G, Colombel JF, Reinisch W, Baumgart DC, Dignass A, Nachury M, Ferrante M, Kazemi-Shirazi L, Grimaud JC, de la Portilla F, Goldin E, Richard MP, Leselbaum A, Danese S; ADMIRE CD Study Group Collaborators. Expanded allogeneic adipose-derived mesenchymal stem cells (Cx601) for complex perianal fistulas in Crohn's disease: a phase 3 randomised, double-blind controlled trial. Lancet. 2016 Sep 24;388(10051):1281-90. doi: 10.1016/S0140-6736(16)31203-X. Epub 2016 Jul 29.
Sanz-Baro R, Garcia-Arranz M, Guadalajara H, de la Quintana P, Herreros MD, Garcia-Olmo D. First-in-Human Case Study: Pregnancy in Women With Crohn's Perianal Fistula Treated With Adipose-Derived Stem Cells: A Safety Study. Stem Cells Transl Med. 2015 Jun;4(6):598-602. doi: 10.5966/sctm.2014-0255. Epub 2015 Apr 29.
Dormandy JA, Rutherford RB. Management of peripheral arterial disease (PAD). TASC Working Group. TransAtlantic Inter-Society Consensus (TASC). J Vasc Surg. 2000 Jan;31(1 Pt 2):S1-S296. No abstract available.
Gensler SW, Haimovici H, Hoffert P, Steinman C, Beneventano TC. Study of vascular lesions in diabetic, nondiabetic patients. Clinical, arteriographic, and surgical considerations. Arch Surg. 1965 Oct;91(4):617-22. doi: 10.1001/archsurg.1965.01320160071016. No abstract available.
Ciavarella A, Silletti A, Mustacchio A, Gargiulo M, Galaverni MC, Stella A, Vannini P. Angiographic evaluation of the anatomic pattern of arterial obstructions in diabetic patients with critical limb ischaemia. Diabete Metab. 1993 Nov-Dec;19(6):586-9.
Ouriel K. Peripheral arterial disease. Lancet. 2001 Oct 13;358(9289):1257-64. doi: 10.1016/S0140-6736(01)06351-6.
Meijer WT, Hoes AW, Rutgers D, Bots ML, Hofman A, Grobbee DE. Peripheral arterial disease in the elderly: The Rotterdam Study. Arterioscler Thromb Vasc Biol. 1998 Feb;18(2):185-92. doi: 10.1161/01.atv.18.2.185.
Hirsch AT, Haskal ZJ, Hertzer NR, Bakal CW, Creager MA, Halperin JL, Hiratzka LF, Murphy WR, Olin JW, Puschett JB, Rosenfield KA, Sacks D, Stanley JC, Taylor LM Jr, White CJ, White J, White RA, Antman EM, Smith SC Jr, Adams CD, Anderson JL, Faxon DP, Fuster V, Gibbons RJ, Hunt SA, Jacobs AK, Nishimura R, Ornato JP, Page RL, Riegel B; American Association for Vascular Surgery; Society for Vascular Surgery; Society for Cardiovascular Angiography and Interventions; Society for Vascular Medicine and Biology; Society of Interventional Radiology; ACC/AHA Task Force on Practice Guidelines Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease; American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; Vascular Disease Foundation. ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation. 2006 Mar 21;113(11):e463-654. doi: 10.1161/CIRCULATIONAHA.106.174526. No abstract available.
Saha SP, Whayne TF Jr, Mukherjee D. Current evidence for antithrombotic therapy after peripheral vascular interventions. Curr Vasc Pharmacol. 2013 Jul;11(4):507-13. doi: 10.2174/1570161111311040014.
Isner JM, Rosenfield K. Redefining the treatment of peripheral artery disease. Role of percutaneous revascularization. Circulation. 1993 Oct;88(4 Pt 1):1534-57. doi: 10.1161/01.cir.88.4.1534. No abstract available.
Andros G. Diagnostic and therapeutic arterial interventions in the ulcerated diabetic foot. Diabetes Metab Res Rev. 2004 May-Jun;20 Suppl 1:S29-33. doi: 10.1002/dmrr.468.
Isner JM, Pieczek A, Schainfeld R, Blair R, Haley L, Asahara T, Rosenfield K, Razvi S, Walsh K, Symes JF. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet. 1996 Aug 10;348(9024):370-4. doi: 10.1016/s0140-6736(96)03361-2.
Baumgartner I, Pieczek A, Manor O, Blair R, Kearney M, Walsh K, Isner JM. Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation. 1998 Mar 31;97(12):1114-23. doi: 10.1161/01.cir.97.12.1114.
Kusumanto YH, van Weel V, Mulder NH, Smit AJ, van den Dungen JJ, Hooymans JM, Sluiter WJ, Tio RA, Quax PH, Gans RO, Dullaart RP, Hospers GA. Treatment with intramuscular vascular endothelial growth factor gene compared with placebo for patients with diabetes mellitus and critical limb ischemia: a double-blind randomized trial. Hum Gene Ther. 2006 Jun;17(6):683-91. doi: 10.1089/hum.2006.17.683.
Comerota AJ, Throm RC, Miller KA, Henry T, Chronos N, Laird J, Sequeira R, Kent CK, Bacchetta M, Goldman C, Salenius JP, Schmieder FA, Pilsudski R. Naked plasmid DNA encoding fibroblast growth factor type 1 for the treatment of end-stage unreconstructible lower extremity ischemia: preliminary results of a phase I trial. J Vasc Surg. 2002 May;35(5):930-6. doi: 10.1067/mva.2002.123677.
Isner JM, Walsh K, Symes J, Pieczek A, Takeshita S, Lowry J, Rosenfield K, Weir L, Brogi E, Jurayj D. Arterial gene transfer for therapeutic angiogenesis in patients with peripheral artery disease. Hum Gene Ther. 1996 May 20;7(8):959-88. doi: 10.1089/hum.1996.7.8-959.
Ho HK, Jang JJ, Kaji S, Spektor G, Fong A, Yang P, Hu BS, Schatzman R, Quertermous T, Cooke JP. Developmental endothelial locus-1 (Del-1), a novel angiogenic protein: its role in ischemia. Circulation. 2004 Mar 16;109(10):1314-9. doi: 10.1161/01.CIR.0000118465.36018.2D. Epub 2004 Feb 23.
Rajagopalan S, Mohler ER 3rd, Lederman RJ, Mendelsohn FO, Saucedo JF, Goldman CK, Blebea J, Macko J, Kessler PD, Rasmussen HS, Annex BH. Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: a phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication. Circulation. 2003 Oct 21;108(16):1933-8. doi: 10.1161/01.CIR.0000093398.16124.29. Epub 2003 Sep 22.
Creager MA, Olin JW, Belch JJ, Moneta GL, Henry TD, Rajagopalan S, Annex BH, Hiatt WR. Effect of hypoxia-inducible factor-1alpha gene therapy on walking performance in patients with intermittent claudication. Circulation. 2011 Oct 18;124(16):1765-73. doi: 10.1161/CIRCULATIONAHA.110.009407. Epub 2011 Sep 26.
Nikol S, Baumgartner I, Van Belle E, Diehm C, Visona A, Capogrossi MC, Ferreira-Maldent N, Gallino A, Wyatt MG, Wijesinghe LD, Fusari M, Stephan D, Emmerich J, Pompilio G, Vermassen F, Pham E, Grek V, Coleman M, Meyer F; TALISMAN 201 investigators. Therapeutic angiogenesis with intramuscular NV1FGF improves amputation-free survival in patients with critical limb ischemia. Mol Ther. 2008 May;16(5):972-8. doi: 10.1038/mt.2008.33. Epub 2008 Apr 1.
Freedman SB, Isner JM. Therapeutic angiogenesis for coronary artery disease. Ann Intern Med. 2002 Jan 1;136(1):54-71. doi: 10.7326/0003-4819-136-1-200201010-00011.
Novakova V, Sandhu GS, Dragomir-Daescu D, Klabusay M. Apelinergic system in endothelial cells and its role in angiogenesis in myocardial ischemia. Vascul Pharmacol. 2016 Jan;76:1-10. doi: 10.1016/j.vph.2015.08.005. Epub 2015 Aug 5.
Van Raemdonck K, Van den Steen PE, Liekens S, Van Damme J, Struyf S. CXCR3 ligands in disease and therapy. Cytokine Growth Factor Rev. 2015 Jun;26(3):311-27. doi: 10.1016/j.cytogfr.2014.11.009. Epub 2014 Nov 22.
Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997 Feb 14;275(5302):964-7. doi: 10.1126/science.275.5302.964.
Leeper NJ, Hunter AL, Cooke JP. Stem cell therapy for vascular regeneration: adult, embryonic, and induced pluripotent stem cells. Circulation. 2010 Aug 3;122(5):517-26. doi: 10.1161/CIRCULATIONAHA.109.881441. No abstract available.
Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, Amano K, Kishimoto Y, Yoshimoto K, Akashi H, Shimada K, Iwasaka T, Imaizumi T; Therapeutic Angiogenesis using Cell Transplantation (TACT) Study Investigators. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 2002 Aug 10;360(9331):427-35. doi: 10.1016/S0140-6736(02)09670-8.
Saigawa T, Kato K, Ozawa T, Toba K, Makiyama Y, Minagawa S, Hashimoto S, Furukawa T, Nakamura Y, Hanawa H, Kodama M, Yoshimura N, Fujiwara H, Namura O, Sogawa M, Hayashi J, Aizawa Y. Clinical application of bone marrow implantation in patients with arteriosclerosis obliterans, and the association between efficacy and the number of implanted bone marrow cells. Circ J. 2004 Dec;68(12):1189-93. doi: 10.1253/circj.68.1189.
Miyamoto K, Nishigami K, Nagaya N, Akutsu K, Chiku M, Kamei M, Soma T, Miyata S, Higashi M, Tanaka R, Nakatani T, Nonogi H, Takeshita S. Unblinded pilot study of autologous transplantation of bone marrow mononuclear cells in patients with thromboangiitis obliterans. Circulation. 2006 Dec 12;114(24):2679-84. doi: 10.1161/CIRCULATIONAHA.106.644203. Epub 2006 Dec 4.
Ruiz-Salmeron R, de la Cuesta-Diaz A, Constantino-Bermejo M, Perez-Camacho I, Marcos-Sanchez F, Hmadcha A, Soria B. Angiographic demonstration of neoangiogenesis after intra-arterial infusion of autologous bone marrow mononuclear cells in diabetic patients with critical limb ischemia. Cell Transplant. 2011;20(10):1629-39. doi: 10.3727/096368910X0177.
Canizo MC, Lozano F, Gonzalez-Porras JR, Barros M, Lopez-Holgado N, Briz E, Sanchez-Guijo FM. Peripheral endothelial progenitor cells (CD133 +) for therapeutic vasculogenesis in a patient with critical limb ischemia. One year follow-up. Cytotherapy. 2007;9(1):99-102. doi: 10.1080/14653240601034708.
Huang P, Li S, Han M, Xiao Z, Yang R, Han ZC. Autologous transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells improves critical limb ischemia in diabetes. Diabetes Care. 2005 Sep;28(9):2155-60. doi: 10.2337/diacare.28.9.2155.
Lu D, Chen B, Liang Z, Deng W, Jiang Y, Li S, Xu J, Wu Q, Zhang Z, Xie B, Chen S. Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract. 2011 Apr;92(1):26-36. doi: 10.1016/j.diabres.2010.12.010. Epub 2011 Jan 8.
Lasala GP, Silva JA, Minguell JJ. Therapeutic angiogenesis in patients with severe limb ischemia by transplantation of a combination stem cell product. J Thorac Cardiovasc Surg. 2012 Aug;144(2):377-82. doi: 10.1016/j.jtcvs.2011.08.053. Epub 2011 Nov 12.
Hmadcha A, Dominguez-Bendala J, Wakeman J, Arredouani M, Soria B. The immune boundaries for stem cell based therapies: problems and prospective solutions. J Cell Mol Med. 2009 Aug;13(8A):1464-75. doi: 10.1111/j.1582-4934.2009.00837.x. Epub 2009 Jul 6.
Gimble J, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy. 2003;5(5):362-9. doi: 10.1080/14653240310003026.
Alvarez Garcia J, Garcia Gomez-Heras S, Riera Del Moral L, Largo C, Garcia-Olmo D, Garcia-Arranz M. The effects of allogenic stem cells in a murine model of hind limb diabetic ischemic tissue. PeerJ. 2017 Aug 21;5:e3664. doi: 10.7717/peerj.3664. eCollection 2017.
Escacena N, Quesada-Hernandez E, Capilla-Gonzalez V, Soria B, Hmadcha A. Bottlenecks in the Efficient Use of Advanced Therapy Medicinal Products Based on Mesenchymal Stromal Cells. Stem Cells Int. 2015;2015:895714. doi: 10.1155/2015/895714. Epub 2015 Jul 27.
Acosta L, Hmadcha A, Escacena N, Perez-Camacho I, de la Cuesta A, Ruiz-Salmeron R, Gauthier BR, Soria B. Adipose mesenchymal stromal cells isolated from type 2 diabetic patients display reduced fibrinolytic activity. Diabetes. 2013 Dec;62(12):4266-9. doi: 10.2337/db13-0896. Epub 2013 Sep 16.
Ramsey SD, Newton K, Blough D, McCulloch DK, Sandhu N, Wagner EH. Patient-level estimates of the cost of complications in diabetes in a managed-care population. Pharmacoeconomics. 1999 Sep;16(3):285-95. doi: 10.2165/00019053-199916030-00005.
Lozano FS, Gonzalez-Porras JR, March JR, Lobos JM, Carrasco E, Ros E. Diabetes mellitus and intermittent claudication: a cross-sectional study of 920 claudicants. Diabetol Metab Syndr. 2014 Feb 17;6(1):21. doi: 10.1186/1758-5996-6-21.
Uccioli L, Meloni M, Izzo V, Giurato L, Merolla S, Gandini R. Critical limb ischemia: current challenges and future prospects. Vasc Health Risk Manag. 2018 Apr 26;14:63-74. doi: 10.2147/VHRM.S125065. eCollection 2018.
Schreuder SM, Hendrix YMGA, Reekers JA, Bipat S. Predictive Parameters for Clinical Outcome in Patients with Critical Limb Ischemia Who Underwent Percutaneous Transluminal Angioplasty (PTA): A Systematic Review. Cardiovasc Intervent Radiol. 2018 Jan;41(1):1-20. doi: 10.1007/s00270-017-1796-9. Epub 2017 Sep 18.
Meloni M, Izzo V, Giurato L, Del Giudice C, Da Ros V, Cervelli V, Gandini R, Uccioli L. Recurrence of Critical Limb Ischemia After Endovascular Intervention in Patients with Diabetic Foot Ulcers. Adv Wound Care (New Rochelle). 2018 Jun 1;7(6):171-176. doi: 10.1089/wound.2017.0778.
Neupane S, Edla S, Maidona E, Sweet MC, Szpunar S, Davis T, LaLonde TA, Mehta RH, Rosman HS, Yamasaki H. Long-term outcomes of patients with diabetes mellitus undergoing percutaneous intervention for popliteal and infrapopliteal peripheral arterial disease. Catheter Cardiovasc Interv. 2018 Jul;92(1):117-123. doi: 10.1002/ccd.27571. Epub 2018 Mar 14.
Spillerova K, Settembre N, Biancari F, Alback A, Venermo M. Angiosome Targeted PTA is More Important in Endovascular Revascularisation than in Surgical Revascularisation: Analysis of 545 Patients with Ischaemic Tissue Lesions. Eur J Vasc Endovasc Surg. 2017 Apr;53(4):567-575. doi: 10.1016/j.ejvs.2017.01.008. Epub 2017 Feb 16.
Dubsky M, Husakova J, Sojakova D, Fejfarova V, Jude EB. Cell Therapy of Severe Ischemia in People with Diabetic Foot Ulcers-Do We Have Enough Evidence? Mol Diagn Ther. 2023 Nov;27(6):673-683. doi: 10.1007/s40291-023-00667-w. Epub 2023 Sep 22.
Soria-Juan B, Garcia-Arranz M, Llanos Jimenez L, Aparicio C, Gonzalez A, Mahillo Fernandez I, Riera Del Moral L, Grochowicz L, Andreu EJ, Marin P, Castellanos G, Moraleda JM, Garcia-Hernandez AM, Lozano FS, Sanchez-Guijo F, Villaron EM, Parra ML, Yanez RM, de la Cuesta Diaz A, Tejedo JR, Bedoya FJ, Martin F, Miralles M, Del Rio Sola L, Fernandez-Santos ME, Ligero JM, Morant F, Hernandez-Blasco L, Andreu E, Hmadcha A, Garcia-Olmo D, Soria B. Efficacy and safety of intramuscular administration of allogeneic adipose tissue derived and expanded mesenchymal stromal cells in diabetic patients with critical limb ischemia with no possibility of revascularization: study protocol for a randomized controlled double-blind phase II clinical trial (The NOMA Trial). Trials. 2021 Sep 6;22(1):595. doi: 10.1186/s13063-021-05430-2.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
NOMA (No More Amputations)
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.