A Clinical Study to Evaluate the Efficacy of Biologics in SpA
NCT ID: NCT04399382
Last Updated: 2022-06-02
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
40 participants
OBSERVATIONAL
2022-01-12
2022-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
A Study to Evaluate the Efficacy and Safety of SHR0302 in Patients With Non-Radiographic Axial Spondyloarthritis
NCT05324631
A Study to Evaluate the Efficacy and Safety of SHR0302 in Patients With Ankylosing Spondylitis
NCT04481139
A Study of Ixekizumab (LY2439821) in Chinese Participants With Radiographic Axial Spondyloarthritis
NCT04285229
A Study to Evaluate the Efficacy and Safty of 608 in Patients With Non- Radiographic Axial Spondyloarthritis (Nr-axSpA)
NCT07349329
A Study to Assess Disease Activity in Adult Participants With Axial Spondyloarthritis Who Receive Upadacitinib in a Real-world Setting
NCT05094128
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
PROSPECTIVE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Non-radiographic group
Participants with non-radiographic axial SpA
Biologics
The exposure of interest in this observational study is the biological therapy of Tumor Necrosis Factor (TNF) inhibitor, specifically etanercept biosmilar/ infliximab/ adalimumab/ golimumab.
Radiographic group
Participants with radiographic axial SpA (a.k.a. ankylosing spondylitis)
Biologics
The exposure of interest in this observational study is the biological therapy of Tumor Necrosis Factor (TNF) inhibitor, specifically etanercept biosmilar/ infliximab/ adalimumab/ golimumab.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Biologics
The exposure of interest in this observational study is the biological therapy of Tumor Necrosis Factor (TNF) inhibitor, specifically etanercept biosmilar/ infliximab/ adalimumab/ golimumab.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
* Unable to undergo MRI examination
* Pregnancy
* Unable to read and/or write Chinese
18 Years
65 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
The University of Hong Kong-Shenzhen Hospital
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Jin-Xian
Shenzhen, Guangdong / 广东, China
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Lecouvet FE, Vander Maren N, Collette L, Michoux N, Triqueneaux P, Stoenoiu M, Houssiau F, Malghem J, Denis ML, Larbi A, Nzeusseu Toukap A. Whole body MRI in spondyloarthritis (SpA): Preliminary results suggest that DWI outperforms STIR for lesion detection. Eur Radiol. 2018 Oct;28(10):4163-4173. doi: 10.1007/s00330-018-5377-3. Epub 2018 Apr 17.
Wang F, Chu C, Zhu L, Zhao C, Wei Y, Chen W, He J, Sun L, Zhou Z. Whole-lesion ADC histogram analysis and the spondyloarthritis research consortium of canada (SPARCC) MRI index in evaluating the disease activity of ankylosing spondylitis. J Magn Reson Imaging. 2019 Jul;50(1):114-126. doi: 10.1002/jmri.26568. Epub 2018 Dec 16.
Bradbury LA, Hollis KA, Gautier B, Shankaranarayana S, Robinson PC, Saad N, Le Cao KA, Brown MA. Diffusion-weighted Imaging Is a Sensitive and Specific Magnetic Resonance Sequence in the Diagnosis of Ankylosing Spondylitis. J Rheumatol. 2018 Jun;45(6):771-778. doi: 10.3899/jrheum.170312. Epub 2018 Feb 15.
Chung HY, Xu X, Lau VW, Ho G, Lee KL, Li PH, Tsang HH, Kwok SK, Lau CS, Wong CS. Comparing diffusion weighted imaging with clinical and blood parameters, and with short tau inversion recovery sequence in detecting spinal and sacroiliac joint inflammation in axial spondyloarthritis. Clin Exp Rheumatol. 2017 Mar-Apr;35(2):262-269. Epub 2016 Nov 13.
Chan CWS, Tsang HHL, Li PH, Lee KH, Lau CS, Wong PYS, Chung HY. Diffusion-weighted imaging versus short tau inversion recovery sequence: Usefulness in detection of active sacroiliitis and early diagnosis of axial spondyloarthritis. PLoS One. 2018 Aug 7;13(8):e0201040. doi: 10.1371/journal.pone.0201040. eCollection 2018.
Lee KH, Chung HY, Xu X, Lau VWH, Lau CS. Apparent Diffusion Coefficient as an Imaging Biomarker for Spinal Disease Activity in Axial Spondyloarthritis. Radiology. 2019 Apr;291(1):121-128. doi: 10.1148/radiol.2019180960. Epub 2019 Feb 5.
Smolen JS, Braun J, Dougados M, Emery P, Fitzgerald O, Helliwell P, Kavanaugh A, Kvien TK, Landewe R, Luger T, Mease P, Olivieri I, Reveille J, Ritchlin C, Rudwaleit M, Schoels M, Sieper J, Wit Md, Baraliakos X, Betteridge N, Burgos-Vargas R, Collantes-Estevez E, Deodhar A, Elewaut D, Gossec L, Jongkees M, Maccarone M, Redlich K, van den Bosch F, Wei JC, Winthrop K, van der Heijde D. Treating spondyloarthritis, including ankylosing spondylitis and psoriatic arthritis, to target: recommendations of an international task force. Ann Rheum Dis. 2014 Jan;73(1):6-16. doi: 10.1136/annrheumdis-2013-203419. Epub 2013 Jun 8.
Landewe R, Sieper J, Mease P, Inman RD, Lambert RG, Deodhar A, Marzo-Ortega H, Magrey M, Kiltz U, Wang X, Li M, Zhong S, Mostafa NM, Lertratanakul A, Pangan AL, Anderson JK. Efficacy and safety of continuing versus withdrawing adalimumab therapy in maintaining remission in patients with non-radiographic axial spondyloarthritis (ABILITY-3): a multicentre, randomised, double-blind study. Lancet. 2018 Jul 14;392(10142):134-144. doi: 10.1016/S0140-6736(18)31362-X. Epub 2018 Jun 29.
Gratacos J, Pontes C, Juanola X, Sanz J, Torres F, Avendano C, Vallano A, Calvo G, de Miguel E, Sanmarti R; REDES-TNF investigators. Non-inferiority of dose reduction versus standard dosing of TNF-inhibitors in axial spondyloarthritis. Arthritis Res Ther. 2019 Jan 8;21(1):11. doi: 10.1186/s13075-018-1772-z.
Zhao M, Zhang P, Fang L, Luo Z, Gu J, Lin Z. Possible predictors for relapse from etanercept discontinuation in ankylosing spondylitis patients in remission: a three years' following-up study. Clin Rheumatol. 2018 Jan;37(1):87-92. doi: 10.1007/s10067-017-3763-x. Epub 2017 Aug 7.
Yang R, Liu H, Fan M. A quick decrease of bone marrow edema in sacroiliac joint could be served as a novel marker for dose tapering of etanercept in ankylosing spondylitis patients. Medicine (Baltimore). 2019 Mar;98(11):e14620. doi: 10.1097/MD.0000000000014620.
Nefla M, Holzinger D, Berenbaum F, Jacques C. The danger from within: alarmins in arthritis. Nat Rev Rheumatol. 2016 Nov;12(11):669-683. doi: 10.1038/nrrheum.2016.162. Epub 2016 Oct 13.
Dolcino M, Tinazzi E, Pelosi A, Patuzzo G, Moretta F, Lunardi C, Puccetti A. Gene Expression Analysis before and after Treatment with Adalimumab in Patients with Ankylosing Spondylitis Identifies Molecular Pathways Associated with Response to Therapy. Genes (Basel). 2017 Apr 24;8(4):127. doi: 10.3390/genes8040127.
Almasi S, Aslani S, Poormoghim H, Jamshidi AR, Poursani S, Mahmoudi M. Gene Expression Profiling of Toll-Like Receptor 4 and 5 in Peripheral Blood Mononuclear Cells in Rheumatic Disorders: Ankylosing Spondylitis and Rheumatoid Arthritis. Iran J Allergy Asthma Immunol. 2016 Feb;15(1):87-92.
De Rycke L, Vandooren B, Kruithof E, De Keyser F, Veys EM, Baeten D. Tumor necrosis factor alpha blockade treatment down-modulates the increased systemic and local expression of Toll-like receptor 2 and Toll-like receptor 4 in spondylarthropathy. Arthritis Rheum. 2005 Jul;52(7):2146-58. doi: 10.1002/art.21155.
Yang ZX, Liang Y, Zhu Y, Li C, Zhang LZ, Zeng XM, Zhong RQ. Increased expression of Toll-like receptor 4 in peripheral blood leucocytes and serum levels of some cytokines in patients with ankylosing spondylitis. Clin Exp Immunol. 2007 Jul;149(1):48-55. doi: 10.1111/j.1365-2249.2007.03396.x. Epub 2007 Apr 25.
Kiyeko GW, Hatterer E, Herren S, Di Ceglie I, van Lent PL, Reith W, Kosco-Vilbois M, Ferlin W, Shang L. Spatiotemporal expression of endogenous TLR4 ligands leads to inflammation and bone erosion in mouse collagen-induced arthritis. Eur J Immunol. 2016 Nov;46(11):2629-2638. doi: 10.1002/eji.201646453. Epub 2016 Sep 6.
Sode J, Bank S, Vogel U, Andersen PS, Sorensen SB, Bojesen AB, Andersen MR, Brandslund I, Dessau RB, Hoffmann HJ, Glintborg B, Hetland ML, Locht H, Heegaard NH, Andersen V. Genetically determined high activities of the TNF-alpha, IL23/IL17, and NFkB pathways were associated with increased risk of ankylosing spondylitis. BMC Med Genet. 2018 Sep 12;19(1):165. doi: 10.1186/s12881-018-0680-z.
Schelbergen RF, Blom AB, van den Bosch MH, Sloetjes A, Abdollahi-Roodsaz S, Schreurs BW, Mort JS, Vogl T, Roth J, van den Berg WB, van Lent PL. Alarmins S100A8 and S100A9 elicit a catabolic effect in human osteoarthritic chondrocytes that is dependent on Toll-like receptor 4. Arthritis Rheum. 2012 May;64(5):1477-87. doi: 10.1002/art.33495.
Voller T, Faust A, Roth J, Schafers M, Vogl T, Hermann S. A Non-Peptidic S100A9 Specific Ligand for Optical Imaging of Phagocyte Activity In Vivo. Mol Imaging Biol. 2018 Jun;20(3):407-416. doi: 10.1007/s11307-017-1148-9.
Turina MC, Sieper J, Yeremenko N, Conrad K, Haibel H, Rudwaleit M, Baeten D, Poddubnyy D. Calprotectin serum level is an independent marker for radiographic spinal progression in axial spondyloarthritis. Ann Rheum Dis. 2014 Sep;73(9):1746-8. doi: 10.1136/annrheumdis-2014-205506. Epub 2014 May 20. No abstract available.
Hu H, Du F, Zhang S, Zhang W. Serum calprotectin correlates with risk and disease severity of ankylosing spondylitis and its change during first month might predict favorable response to treatment. Mod Rheumatol. 2019 Sep;29(5):836-842. doi: 10.1080/14397595.2018.1519103. Epub 2019 Jan 3.
Olofsson T, Lindqvist E, Mogard E, Andreasson K, Marsal J, Geijer M, Kristensen LE, Wallman JK. Elevated faecal calprotectin is linked to worse disease status in axial spondyloarthritis: results from the SPARTAKUS cohort. Rheumatology (Oxford). 2019 Jul 1;58(7):1176-1187. doi: 10.1093/rheumatology/key427.
Gupta L, Bhattacharya S, Agarwal V, Aggarwal A. Elevated levels of serum MRP8/14 in ankylosing spondylitis: associated with peripheral arthritis and active disease. Clin Rheumatol. 2016 Dec;35(12):3075-3079. doi: 10.1007/s10067-016-3448-x. Epub 2016 Oct 13.
Levitova A, Hulejova H, Spiritovic M, Pavelka K, Senolt L, Husakova M. Clinical improvement and reduction in serum calprotectin levels after an intensive exercise programme for patients with ankylosing spondylitis and non-radiographic axial spondyloarthritis. Arthritis Res Ther. 2016 Nov 25;18(1):275. doi: 10.1186/s13075-016-1180-1.
Huang J, Yin Z, Song G, Cui S, Jiang J, Zhang L. Discriminating Value of Calprotectin in Disease Activity and Progression of Nonradiographic Axial Spondyloarthritis and Ankylosing Spondylitis. Dis Markers. 2017;2017:7574147. doi: 10.1155/2017/7574147. Epub 2017 May 24.
Paramarta JE, Turina MC, Noordenbos T, Heijda TF, Blijdorp IC, Yeremenko N, Baeten D. A proof-of-concept study with the tyrosine kinase inhibitor nilotinib in spondyloarthritis. J Transl Med. 2016 Oct 27;14(1):308. doi: 10.1186/s12967-016-1050-2.
Schelbergen RF, de Munter W, van den Bosch MH, Lafeber FP, Sloetjes A, Vogl T, Roth J, van den Berg WB, van der Kraan PM, Blom AB, van Lent PL. Alarmins S100A8/S100A9 aggravate osteophyte formation in experimental osteoarthritis and predict osteophyte progression in early human symptomatic osteoarthritis. Ann Rheum Dis. 2016 Jan;75(1):218-25. doi: 10.1136/annrheumdis-2014-205480. Epub 2014 Sep 1.
Geven EJ, van den Bosch MH, Di Ceglie I, Ascone G, Abdollahi-Roodsaz S, Sloetjes AW, Hermann S, Schafers M, van de Loo FA, van der Kraan PM, Koenders MI, Foell D, Roth J, Vogl T, van Lent PL. S100A8/A9, a potent serum and molecular imaging biomarker for synovial inflammation and joint destruction in seronegative experimental arthritis. Arthritis Res Ther. 2016 Oct 24;18(1):247. doi: 10.1186/s13075-016-1121-z.
van Lent PL, Blom AB, Schelbergen RF, Sloetjes A, Lafeber FP, Lems WF, Cats H, Vogl T, Roth J, van den Berg WB. Active involvement of alarmins S100A8 and S100A9 in the regulation of synovial activation and joint destruction during mouse and human osteoarthritis. Arthritis Rheum. 2012 May;64(5):1466-76. doi: 10.1002/art.34315.
van den Bosch MH, Blom AB, Schelbergen RF, Vogl T, Roth JP, Sloetjes AW, van den Berg WB, van der Kraan PM, van Lent PL. Induction of Canonical Wnt Signaling by the Alarmins S100A8/A9 in Murine Knee Joints: Implications for Osteoarthritis. Arthritis Rheumatol. 2016 Jan;68(1):152-63. doi: 10.1002/art.39420.
Schelbergen RF, van Dalen S, ter Huurne M, Roth J, Vogl T, Noel D, Jorgensen C, van den Berg WB, van de Loo FA, Blom AB, van Lent PL. Treatment efficacy of adipose-derived stem cells in experimental osteoarthritis is driven by high synovial activation and reflected by S100A8/A9 serum levels. Osteoarthritis Cartilage. 2014 Aug;22(8):1158-66. doi: 10.1016/j.joca.2014.05.022. Epub 2014 Jun 10.
Koenders MI, Marijnissen RJ, Devesa I, Lubberts E, Joosten LA, Roth J, van Lent PL, van de Loo FA, van den Berg WB. Tumor necrosis factor-interleukin-17 interplay induces S100A8, interleukin-1beta, and matrix metalloproteinases, and drives irreversible cartilage destruction in murine arthritis: rationale for combination treatment during arthritis. Arthritis Rheum. 2011 Aug;63(8):2329-39. doi: 10.1002/art.30418.
Zhu B, Zhu Q, Li N, Wu T, Liu S, Liu S. Association of serum/plasma high mobility group box 1 with autoimmune diseases: A systematic review and meta-analysis. Medicine (Baltimore). 2018 Jul;97(29):e11531. doi: 10.1097/MD.0000000000011531.
Chen Y, Sun W, Li S, Ni J, Su Y, Wang C, Luo X, Tu W, Shen G, Gong F, Zheng F, Dong L. Preliminary study of high mobility group box chromosomal protein 1(HMGB1) in ankylosing spondylitis patients. Clin Exp Rheumatol. 2015 Mar-Apr;33(2):187-94. Epub 2015 Jan 20.
Wang C, Miao Y, Wu X, Huang Y, Sun M, Zhu Y, Zheng F, Sun W, Dong L. Serum HMGB1 Serves as a Novel Laboratory Indicator Reflecting Disease Activity and Treatment Response in Ankylosing Spondylitis Patients. J Immunol Res. 2016;2016:6537248. doi: 10.1155/2016/6537248. Epub 2016 Oct 5.
Oktayoglu P, Em S, Tahtasiz M, Bozkurt M, Ucar D, Yazmalar L, Nas K, Yardimeden I, Cevik F, Celik Y, Mete N. Elevated serum levels of high mobility group box protein 1 (HMGB1) in patients with ankylosing spondylitis and its association with disease activity and quality of life. Rheumatol Int. 2013 May;33(5):1327-31. doi: 10.1007/s00296-012-2578-y. Epub 2012 Nov 10.
Hou C, Luan L, Ren C. Oxidized low-density lipoprotein promotes osteoclast differentiation from CD68 positive mononuclear cells by regulating HMGB1 release. Biochem Biophys Res Commun. 2018 Jan 1;495(1):1356-1362. doi: 10.1016/j.bbrc.2017.11.083. Epub 2017 Nov 14.
Hasegawa M, Yoshida T, Sudo A. Role of tenascin-C in articular cartilage. Mod Rheumatol. 2018 Mar;28(2):215-220. doi: 10.1080/14397595.2017.1349560. Epub 2017 Jul 19.
Okamura N, Hasegawa M, Nakoshi Y, Iino T, Sudo A, Imanaka-Yoshida K, Yoshida T, Uchida A. Deficiency of tenascin-C delays articular cartilage repair in mice. Osteoarthritis Cartilage. 2010 Jun;18(6):839-48. doi: 10.1016/j.joca.2009.08.013. Epub 2009 Sep 6.
Matsui Y, Hasegawa M, Iino T, Imanaka-Yoshida K, Yoshida T, Sudo A. Tenascin-C Prevents Articular Cartilage Degeneration in Murine Osteoarthritis Models. Cartilage. 2018 Jan;9(1):80-88. doi: 10.1177/1947603516681134. Epub 2016 Dec 4.
Gupta L, Bhattacharya S, Aggarwal A. Tenascin-C, a biomarker of disease activity in early ankylosing spondylitis. Clin Rheumatol. 2018 May;37(5):1401-1405. doi: 10.1007/s10067-017-3938-5. Epub 2018 Jan 8.
Midwood K, Sacre S, Piccinini AM, Inglis J, Trebaul A, Chan E, Drexler S, Sofat N, Kashiwagi M, Orend G, Brennan F, Foxwell B. Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat Med. 2009 Jul;15(7):774-80. doi: 10.1038/nm.1987. Epub 2009 Jun 28.
Sofat N, Robertson SD, Hermansson M, Jones J, Mitchell P, Wait R. Tenascin-C fragments are endogenous inducers of cartilage matrix degradation. Rheumatol Int. 2012 Sep;32(9):2809-17. doi: 10.1007/s00296-011-2067-8. Epub 2011 Aug 27.
Schwenzer A, Jiang X, Mikuls TR, Payne JB, Sayles HR, Quirke AM, Kessler BM, Fischer R, Venables PJ, Lundberg K, Midwood KS. Identification of an immunodominant peptide from citrullinated tenascin-C as a major target for autoantibodies in rheumatoid arthritis. Ann Rheum Dis. 2016 Oct;75(10):1876-83. doi: 10.1136/annrheumdis-2015-208495. Epub 2015 Dec 9.
Cutolo M, Soldano S, Paolino S. Potential roles for tenascin in (very) early diagnosis and treatment of rheumatoid arthritis. Ann Rheum Dis. 2020 Apr;79(4):e42. doi: 10.1136/annrheumdis-2019-215063. Epub 2019 Feb 1. No abstract available.
Maksymowych WP. Biomarkers for Diagnosis of Axial Spondyloarthritis, Disease Activity, Prognosis, and Prediction of Response to Therapy. Front Immunol. 2019 Mar 7;10:305. doi: 10.3389/fimmu.2019.00305. eCollection 2019.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
HKUSZH201902013
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.