Trial of Imatinib for Hospitalized Adults With COVID-19
NCT ID: NCT04394416
Last Updated: 2025-07-23
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
PHASE3
21 participants
INTERVENTIONAL
2020-06-02
2025-07-17
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
A Study to Evaluate Efficacy and Safety of PTC299 (Emvododstat) in Hospitalized Participants With Coronavirus (COVID-19)
NCT04439071
IMM-BCP-01 in Mild to Moderate COVID-19
NCT05429021
Phase III Study of AZD7442 for Treatment of COVID-19 in Outpatient Adults
NCT04723394
Ibrutinib for the Treatment of COVID-19 in Patients Requiring Hospitalization
NCT04439006
Phase III Double-blind, Placebo-controlled Study of AZD7442 for Post- Exposure Prophylaxis of COVID-19 in Adults
NCT04625972
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Imatinib is a tyrosine kinase inhibitor that has been approved for treatment of many hematologic and solid neoplasm. Imatinib is a weak base that compared to the extracellular compartment is enriched over 1000-fold in the lysosome within several hours as a result of its lysosomotropic property. Imatinib as a weak base accumulates in lysosomes resulting in some antiviral activities by lysosomal alkalization required for virus/cell fusion.
Imatinib demonstrates in vitro activity against SARS-CoV viruses. Imatinib inhibit SARS-CoV and MERS-CoV with micromolar EC50s (range, 9.8 to 17.6 μM) with low toxicity. The mechanism of action studies suggested that ABL-1 tyrosine kinase regulates budding or release of poxviruses and Ebola virus, demonstrating that the c-ABL-1 kinase signaling pathways play an important role in the egress of these viruses. It is also reported that kinase signaling may also be important for replication of two members of the Coronaviridae family, SARS-CoV and MERS-CoV. In vivo studies performed in the mouse model of vaccinia virus infection showed that imatinib was effective in blocking dissemination of the virus.
Imatinib has anti-inflammatory activity including its effectiveness in a "two-hit" murine model of acute lung injury (ALI) caused by combined lipopolysaccharide (LPS) and ventilator-induced lung injury (VILI). Imatinib significantly decreased bronchoalveolar lavage protein, total cells, neutrophils, and TNFα levels in mice exposed to LPS plus VILI, indicating that it attenuates ALI in this clinically relevant model. In another experiment, imatinib attenuated ALI when given 4 hours after LPS, suggesting potential efficacy when given after the onset of injury. Overall, these results strongly suggest the therapeutic potential of imatinib against inflammatory vascular leak and a potential role of imatinib combination therapy for patients with acute respiratory distress syndrome (ARDS) on mechanical ventilation.
The investigators hypothesize that addition of imatinib to the best conventional care (BCC) improves the outcome of hospitalized adult patients with COVID-19. This hypothesis is on the bases of 1) intralysosomal entrapment of imatinib will increase endosomal pH and effectively decrease SARS-CoV-2/cell fusion, 2) kinase inhibitory activity of imatinib will interfere with budding/release or replication of SARS-CoV-2, and 3) because of the critical role of mechanical ventilation in the care of patients with ARDS, imatinib will have a significant clinical impact for patients with severe COVID-19 infection in Intensive Care Unit (ICU).
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
Arm B: Placebo
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Imatinib
Imatinib oral 400 mg daily for 14 days.
Imatinib
Therapeutic
Placebo
Placebo oral for 14 days
Placebo oral tablet
Placebo
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Imatinib
Therapeutic
Placebo oral tablet
Placebo
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
1. Ability to understand and willingness to sign a written informed consent document. Informed consent must be obtained prior to participation in the study. For patients who are too unwell to provide consent such as patients on invasive ventilator or ECMO, Legally Authorized Representative (LAR) can sign the informed consent.
2. Hospitalized patients ≥ 18 years of age
3. Positive RT-PCR assay for SARS-CoV-2 in the respiratory tract sample (oropharyngeal, nasopharyngeal or BAL) by Center for Disease Control or local laboratory within 7 days of randomization.
Exclusion Criteria
2. Pregnant or breastfeeding women.
3. Patients with significant liver or renal dysfunction function at screen as defined as:
* Direct bilirubin \> 2.5 mg/dL
* AST, ALT, or alkaline phosphatase \> 5 x upper limit of normal
* eGFR ≤ 30 mL/min or requiring renal replacement therapy
4. Patients with significant hematologic disorder at screen as defined as:
* Absolute neutrophil count (ANC) \< 500/μL
* Platelet \< 20,000/μL
* Hemoglobin \< 7 g/dL
5. Uncontrolled undercurrent illness including, but not limited to, symptomatic congestive heart failure, unstable angina pectoris, uncontrolled active seizure disorder, or psychiatric illness/social situations that per site Principal Investigator's judgment would limit compliance with study requirements.
6. Known allergy to imatinib or its component products.
7. Any other clinical conditions that in the opinion of the investigator would make the subject unsuitable for the study.
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University of Maryland, Baltimore
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
University of Maryland Medical Center
Baltimore, Maryland, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020 Feb 15;395(10223):507-513. doi: 10.1016/S0140-6736(20)30211-7. Epub 2020 Jan 30.
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020 Feb 15;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5. Epub 2020 Jan 24.
Liu K, Fang YY, Deng Y, Liu W, Wang MF, Ma JP, Xiao W, Wang YN, Zhong MH, Li CH, Li GC, Liu HG. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin Med J (Engl). 2020 May 5;133(9):1025-1031. doi: 10.1097/CM9.0000000000000744.
Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X, Peng Z. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020 Mar 17;323(11):1061-1069. doi: 10.1001/jama.2020.1585.
Al-Bari MA. Chloroquine analogues in drug discovery: new directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J Antimicrob Chemother. 2015;70(6):1608-21. doi: 10.1093/jac/dkv018. Epub 2015 Feb 17.
Daniel WA, Bickel MH, Honegger UE. The contribution of lysosomal trapping in the uptake of desipramine and chloroquine by different tissues. Pharmacol Toxicol. 1995 Dec;77(6):402-6. doi: 10.1111/j.1600-0773.1995.tb01050.x.
Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. Effects of chloroquine on viral infections: an old drug against today's diseases? Lancet Infect Dis. 2003 Nov;3(11):722-7. doi: 10.1016/s1473-3099(03)00806-5.
Yan Y, Zou Z, Sun Y, Li X, Xu KF, Wei Y, Jin N, Jiang C. Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Res. 2013 Feb;23(2):300-2. doi: 10.1038/cr.2012.165. Epub 2012 Dec 4. No abstract available.
Keyaerts E, Vijgen L, Maes P, Neyts J, Van Ranst M. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem Biophys Res Commun. 2004 Oct 8;323(1):264-8. doi: 10.1016/j.bbrc.2004.08.085.
Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents. 2020 May;55(5):105938. doi: 10.1016/j.ijantimicag.2020.105938. Epub 2020 Mar 12.
Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020 Mar;30(3):269-271. doi: 10.1038/s41422-020-0282-0. Epub 2020 Feb 4. No abstract available.
Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 2020 Mar 16;14(1):72-73. doi: 10.5582/bst.2020.01047. Epub 2020 Feb 19.
Biot C, Daher W, Chavain N, Fandeur T, Khalife J, Dive D, De Clercq E. Design and synthesis of hydroxyferroquine derivatives with antimalarial and antiviral activities. J Med Chem. 2006 May 4;49(9):2845-9. doi: 10.1021/jm0601856.
Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, Liu X, Zhao L, Dong E, Song C, Zhan S, Lu R, Li H, Tan W, Liu D. In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020 Jul 28;71(15):732-739. doi: 10.1093/cid/ciaa237.
Chapuy B, Panse M, Radunski U, Koch R, Wenzel D, Inagaki N, Haase D, Truemper L, Wulf GG. ABC transporter A3 facilitates lysosomal sequestration of imatinib and modulates susceptibility of chronic myeloid leukemia cell lines to this drug. Haematologica. 2009 Nov;94(11):1528-36. doi: 10.3324/haematol.2009.008631.
Gotink KJ, Broxterman HJ, Labots M, de Haas RR, Dekker H, Honeywell RJ, Rudek MA, Beerepoot LV, Musters RJ, Jansen G, Griffioen AW, Assaraf YG, Pili R, Peters GJ, Verheul HM. Lysosomal sequestration of sunitinib: a novel mechanism of drug resistance. Clin Cancer Res. 2011 Dec 1;17(23):7337-46. doi: 10.1158/1078-0432.CCR-11-1667. Epub 2011 Oct 6.
Gotink KJ, Rovithi M, de Haas RR, Honeywell RJ, Dekker H, Poel D, Azijli K, Peters GJ, Broxterman HJ, Verheul HM. Cross-resistance to clinically used tyrosine kinase inhibitors sunitinib, sorafenib and pazopanib. Cell Oncol (Dordr). 2015 Apr;38(2):119-29. doi: 10.1007/s13402-015-0218-8. Epub 2015 Feb 11.
Colombo F, Trombetta E, Cetrangolo P, Maggioni M, Razini P, De Santis F, Torrente Y, Prati D, Torresani E, Porretti L. Giant Lysosomes as a Chemotherapy Resistance Mechanism in Hepatocellular Carcinoma Cells. PLoS One. 2014 Dec 10;9(12):e114787. doi: 10.1371/journal.pone.0114787. eCollection 2014.
Ruzickova E, Skoupa N, Dolezel P, Smith DA, Mlejnek P. The Lysosomal Sequestration of Tyrosine Kinase Inhibitors and Drug Resistance. Biomolecules. 2019 Oct 31;9(11):675. doi: 10.3390/biom9110675.
Burger H, den Dekker AT, Segeletz S, Boersma AW, de Bruijn P, Debiec-Rychter M, Taguchi T, Sleijfer S, Sparreboom A, Mathijssen RH, Wiemer EA. Lysosomal Sequestration Determines Intracellular Imatinib Levels. Mol Pharmacol. 2015 Sep;88(3):477-87. doi: 10.1124/mol.114.097451. Epub 2015 Jun 24.
Fu D, Zhou J, Zhu WS, Manley PW, Wang YK, Hood T, Wylie A, Xie XS. Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering. Nat Chem. 2014 Jul;6(7):614-22. doi: 10.1038/nchem.1961. Epub 2014 May 25.
Chilakapati SR, Serasanambati M, Vissavajjhala P, Kanala JR, Chilakapati DR. Amelioration of bleomycin-induced pulmonary fibrosis in a mouse model by a combination therapy of bosentan and imatinib. Exp Lung Res. 2015 May;41(4):173-88. doi: 10.3109/01902148.2014.939312. Epub 2015 Apr 6.
Li M, Abdollahi A, Grone HJ, Lipson KE, Belka C, Huber PE. Late treatment with imatinib mesylate ameliorates radiation-induced lung fibrosis in a mouse model. Radiat Oncol. 2009 Dec 21;4:66. doi: 10.1186/1748-717X-4-66.
Wolf AM, Wolf D, Rumpold H, Ludwiczek S, Enrich B, Gastl G, Weiss G, Tilg H. The kinase inhibitor imatinib mesylate inhibits TNF-alpha production in vitro and prevents TNF-dependent acute hepatic inflammation. Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13622-7. doi: 10.1073/pnas.0501758102. Epub 2005 Sep 8.
Rizzo AN, Sammani S, Esquinca AE, Jacobson JR, Garcia JG, Letsiou E, Dudek SM. Imatinib attenuates inflammation and vascular leak in a clinically relevant two-hit model of acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2015 Dec 1;309(11):L1294-304. doi: 10.1152/ajplung.00031.2015. Epub 2015 Oct 2.
Schrezenmeier E, Dorner T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol. 2020 Mar;16(3):155-166. doi: 10.1038/s41584-020-0372-x. Epub 2020 Feb 7.
Horne GA, Stobo J, Kelly C, Mukhopadhyay A, Latif AL, Dixon-Hughes J, McMahon L, Cony-Makhoul P, Byrne J, Smith G, Koschmieder S, BrUmmendorf TH, Schafhausen P, Gallipoli P, Thomson F, Cong W, Clark RE, Milojkovic D, Helgason GV, Foroni L, Nicolini FE, Holyoake TL, Copland M. A randomised phase II trial of hydroxychloroquine and imatinib versus imatinib alone for patients with chronic myeloid leukaemia in major cytogenetic response with residual disease. Leukemia. 2020 Jul;34(7):1775-1786. doi: 10.1038/s41375-019-0700-9. Epub 2020 Jan 10.
Wang Y, Fan G, Salam A, Horby P, Hayden FG, Chen C, Pan J, Zheng J, Lu B, Guo L, Wang C, Cao B. Comparative Effectiveness of Combined Favipiravir and Oseltamivir Therapy Versus Oseltamivir Monotherapy in Critically Ill Patients With Influenza Virus Infection. J Infect Dis. 2020 Apr 27;221(10):1688-1698. doi: 10.1093/infdis/jiz656.
Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, Ruan L, Song B, Cai Y, Wei M, Li X, Xia J, Chen N, Xiang J, Yu T, Bai T, Xie X, Zhang L, Li C, Yuan Y, Chen H, Li H, Huang H, Tu S, Gong F, Liu Y, Wei Y, Dong C, Zhou F, Gu X, Xu J, Liu Z, Zhang Y, Li H, Shang L, Wang K, Li K, Zhou X, Dong X, Qu Z, Lu S, Hu X, Ruan S, Luo S, Wu J, Peng L, Cheng F, Pan L, Zou J, Jia C, Wang J, Liu X, Wang S, Wu X, Ge Q, He J, Zhan H, Qiu F, Guo L, Huang C, Jaki T, Hayden FG, Horby PW, Zhang D, Wang C. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med. 2020 May 7;382(19):1787-1799. doi: 10.1056/NEJMoa2001282. Epub 2020 Mar 18.
Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, Doudier B, Courjon J, Giordanengo V, Vieira VE, Tissot Dupont H, Honore S, Colson P, Chabriere E, La Scola B, Rolain JM, Brouqui P, Raoult D. RETRACTED: Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020 Jul;56(1):105949. doi: 10.1016/j.ijantimicag.2020.105949. Epub 2020 Mar 20.
Rainsford KD, Parke AL, Clifford-Rashotte M, Kean WF. Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases. Inflammopharmacology. 2015 Oct;23(5):231-69. doi: 10.1007/s10787-015-0239-y. Epub 2015 Aug 6.
Cutler DJ, MacIntyre AC, Tett SE. Pharmacokinetics and cellular uptake of 4-aminoquinoline antimalarials. Agents Actions Suppl. 1988;24:142-57. doi: 10.1007/978-3-0348-9160-8_13. No abstract available.
Tett SE. Clinical pharmacokinetics of slow-acting antirheumatic drugs. Clin Pharmacokinet. 1993 Nov;25(5):392-407. doi: 10.2165/00003088-199325050-00005.
Carmichael SJ, Charles B, Tett SE. Population pharmacokinetics of hydroxychloroquine in patients with rheumatoid arthritis. Ther Drug Monit. 2003 Dec;25(6):671-81. doi: 10.1097/00007691-200312000-00005.
Yusuf IH, Foot B, Galloway J, Ardern-Jones MR, Watson SL, Yelf C, Burdon MA, Bishop PN, Lotery AJ. The Royal College of Ophthalmologists recommendations on screening for hydroxychloroquine and chloroquine users in the United Kingdom: executive summary. Eye (Lond). 2018 Jul;32(7):1168-1173. doi: 10.1038/s41433-018-0136-x. Epub 2018 Jun 11. No abstract available.
Chatre C, Roubille F, Vernhet H, Jorgensen C, Pers YM. Cardiac Complications Attributed to Chloroquine and Hydroxychloroquine: A Systematic Review of the Literature. Drug Saf. 2018 Oct;41(10):919-931. doi: 10.1007/s40264-018-0689-4.
McHenry AR, Wempe MF, Rice PJ. Stability of Extemporaneously Prepared Hydroxychloroquine Sulfate 25-mg/mL Suspensions in Plastic Bottles and Syringes. Int J Pharm Compd. 2017 May-Jun;21(3):251-254.
Emadi A, Chua JV, Talwani R, Bentzen SM, Baddley J. Safety and Efficacy of Imatinib for Hospitalized Adults with COVID-19: A structured summary of a study protocol for a randomised controlled trial. Trials. 2020 Oct 28;21(1):897. doi: 10.1186/s13063-020-04819-9.
Zhao H, Mendenhall M, Deininger MW. Imatinib is not a potent anti-SARS-CoV-2 drug. Leukemia. 2020 Nov;34(11):3085-3087. doi: 10.1038/s41375-020-01045-9. Epub 2020 Sep 30. No abstract available.
Related Links
Access external resources that provide additional context or updates about the study.
FDA. Imatinib Label. Food and Drug Administration 2018
WHO. Coronavirus disease (COVID-2019) R\&D Blueprint. World Health Organization 2020
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
2038GCCC
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.