Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
10735 participants
OBSERVATIONAL
2020-03-01
2020-10-16
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Chest CT can allow early depiction of COVID-19, especially when performed more than 3 days after symptoms onset. It is important to distinguish between COVID-19 and bacterial causes of pulmonary infection, which requires expertise in thoracic imaging. Thus, it is important to identify reliable CT diagnostic criteria based on visual assessment, and also develop deep-learning based solutions for early positive diagnosis which could be used by less experienced readers, in a context of large epidemic.
Several risk factors for poor outcome are already identified, such as older age, comorbidities, or an elevated d-dimer level at presentation (PMID: 32171076). Extensive CT abnormalities are linked to poor outcome, but some patients secondarily worsen despite non extensive abnormalities at first assessment, highlighting the need for worsening prediction based on initial imaging findings. Lastly, there is currently no drug with a proven efficacy for patients with acute respiratory distress syndrome, who for management relies on mechanical ventilation and supportive care. Some hypothesized that Remdesivir, an antiviral therapy could be effective (PMID: 32147516), with ongoing randomized trials conducted in China and the US. Automated tools allowing quantifying the disease extent on CT would be desirable in order to evaluate the efficacy of new treatments.
Building a large dataset of CT images is needed for identification of accurate CT criteria and development of deep learning-based solutions for diagnosis, quantification and prognostic estimation.
The aim of this project is three fold: (i) create a multi-centric open database repository on CT scans relative to COVID-19, (ii) create a multi-expert annotation protocol with different level of annotations depicting the severity of the disease, (iii) allow the development of non-proprietary computer aided solutions (academia \& industry) for automatic quantification of the diseases and prognosis through the use of the latest advances in the field of artificial intelligence.
For patients, the validation of reliable diagnostic criteria will allow early detection of the disease, and better distinction with other potential cause of acute respiratory symptoms, requiring a specific treatment, such as bacterial bronchopneumonia. It will contribute to a standardization of care as well as an equal access to diagnosis and treatment for the ensemble of the population.
Public health benefit will be an access to CT diagnosis of COVID-19 independently from the availability of local expertise in thoracic imaging. The possibility to anticipate the need for ventilation, based on the developed CT severity scores, will also positively impact the management of patients in particular in the context of a massive flow of patients as expected at the epidemic peak. This project will allow evaluating the proportion of patients likely to present respiratory sequelae, based on the severity and extent of lung abnormalities at the acute phase of the disease.
The availability of automated quantification tools will help evaluating treatment efficacy if new therapeutic approaches are developed.
Lastly, the developed tools for early diagnosis, evaluation of severity and prediction of outcomes could prove useful if other viral pandemic occurs in the future. Indeed SARS-Cov2 outbreak has been preceded by SARS and MERS outbreaks due to other coronavirus.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Keywords
Explore important study keywords that can help with search, categorization, and topic discovery.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
RETROSPECTIVE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Patients with suspicions of COVID-19 pneumonia
Patients with suspicions of COVID-19 pneumonia
Chest computed tomography (CT)
Chest computed tomography (CT) examination
Reverse-transcription polymerase chain reaction (RT-PCR)
Identification of viral RNA by reverse-transcription polymerase chain reaction
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Chest computed tomography (CT)
Chest computed tomography (CT) examination
Reverse-transcription polymerase chain reaction (RT-PCR)
Identification of viral RNA by reverse-transcription polymerase chain reaction
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* CT examination performed for suspicion or follow-up of COVID-19
* Non opposition for use of data
Exclusion Criteria
* Failure of CT image anonymized export
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Institut National de la Santé Et de la Recherche Médicale, France
OTHER_GOV
GE Healthcare
INDUSTRY
Orange healthcare
UNKNOWN
TheraPanacea
UNKNOWN
Assistance Publique - Hôpitaux de Paris
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Marie-Pierre REVEL, MD,PhD
Role: PRINCIPAL_INVESTIGATOR
Assistance Publique - Hôpitaux de Paris
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Cochin Hospital
Paris, , France
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, Tao Q, Sun Z, Xia L. Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology. 2020 Aug;296(2):E32-E40. doi: 10.1148/radiol.2020200642. Epub 2020 Feb 26.
Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020 Mar 28;395(10229):1054-1062. doi: 10.1016/S0140-6736(20)30566-3. Epub 2020 Mar 11.
Ko WC, Rolain JM, Lee NY, Chen PL, Huang CT, Lee PI, Hsueh PR. Arguments in favour of remdesivir for treating SARS-CoV-2 infections. Int J Antimicrob Agents. 2020 Apr;55(4):105933. doi: 10.1016/j.ijantimicag.2020.105933. Epub 2020 Mar 6. No abstract available.
Revel MP, Boussouar S, de Margerie-Mellon C, Saab I, Lapotre T, Mompoint D, Chassagnon G, Milon A, Lederlin M, Bennani S, Moliere S, Debray MP, Bompard F, Dangeard S, Hani C, Ohana M, Bommart S, Jalaber C, El Hajjam M, Petit I, Fournier L, Khalil A, Brillet PY, Bellin MF, Redheuil A, Rocher L, Bousson V, Rousset P, Gregory J, Deux JF, Dion E, Valeyre D, Porcher R, Jilet L, Abdoul H. Study of Thoracic CT in COVID-19: The STOIC Project. Radiology. 2021 Oct;301(1):E361-E370. doi: 10.1148/radiol.2021210384. Epub 2021 Jun 29.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
APHP200434
Identifier Type: -
Identifier Source: org_study_id