Using Biovitals® Sentinel to Monitor Disease Progression in Subjects Quarantined for Suspected COVID-19
NCT ID: NCT04343794
Last Updated: 2020-04-15
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
NA
200 participants
INTERVENTIONAL
2020-04-01
2022-01-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Current local quarantine policy in Hong Kong for individuals suspected for COVID-19 requires daily self-reported symptomatology and body temperature, given the intermittent nature and the high dependency of self-discipline undermine the practicality of the approach. To date, the advance in sensor technology has made possible to continuously monitor individual physiological parameters using a simple wearable device. Together with the mobile wearable technology that allowing instantaneous, multi-directional, and massive data transfer, remote continuous physiological monitoring is made possible. The Cardiology division, the Univeristy of Hong Kong has been in collaboration with Biofourmis to implement such technology for remote heart failure management. Similar digital therapeutic system can be applied to remotely monitor physiological parameters of large number of quarantined or suspected COVID-19 at home or in quarantine facility. It is purposed to allow the monitoring team to effectively and remotely monitor COVID-19 quarantined and patients, manage and evaluate the disease progression.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Feasibility of Remote Evaluation and Monitoring of Acoustic Pathophysiological Signals With External Sensor Technology in Covid-19
NCT04695821
Vital Sensor Monitors for CV19 Detection
NCT04635787
COVID-19 Surveillance Based on Smart Wearable Device
NCT04459637
Observational Digital Biomarker Discovery in Respiratory Virus Challenge Studies
NCT04772170
COntinuous Signs Monitoring In Covid-19 Patients
NCT04581031
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
In the past few decades, advances in sensor technology miniaturize electronic physiological sensors that could be incorporated into wearable devices allowing continuous monitoring of physiological parameters such as skin temperature, heart rate, respiratory rate, oxygen saturation, perspiration and activity of ambulatory subjects in a 24/7 basis. Together with current telecommunication platform capable of instantaneous and multi-directional massive data transfer, it is possible to remotely monitor a large number of individual subjects' physiological parameters in a real-time manner, and relay to managing physicians for timely intervention. Nonetheless, such potentials have not been fully explored in the real-world disease management. The current study will assess the impact of remote continuous real-time physiological monitoring using wearable armband device Everion® (Biofourmis, Singapore) and artificial intelligence-powered analytical platform Biovitals® Sentinel (Biofourmis, Singapore) on detection of disease progression in asymptomatic subjects with COVID-19 exposure under mandatory quarantine at designated facilities in Hong Kong. The research hypothesis is that by processing continuous physiological data collected using wearable device Everion® and patient reported outcomes with a cloud-based analytics platform Biovitals® Sentinel, it will possible to detect physiological changes and other clinically meaningful alerts that indicate early clinical progression in quarantined subjects with COVID-19 exposure.
The wearable vital sign monitor Everion® is capable to track multiple vitals sings including heart rate, heart rate variability, blood pulse variation, respiration rate under rest, activity, steps, skin temperature and etc. It is Bluetooth connected to a dedicated study-smartphone that allows remote transfer of all the physiological data captured by the wearable device in real time. A specially-designed application (APP) on the study-smartphone enables the patient to participate in health monitoring by reporting symptoms regularly and make aware of his/her physical and physiological patterns via the monitoring displays on the smart-phone. The patient's passive physiological data from the device and the active data on the symptoms and outcomes from Biovitals® analytics platform are automatically transferred to the monitoring console on the cloud. Thus, the Biofourmis platform solution is proposed to allow the monitoring team to effectively and remotely monitor COVID-19 patients and evaluate the disease progression. Leveraging Everion, the smartphone APP, Biovitals® analytics platform and the caregiver dashboard, biofourmis has built an end to end solution, Biovitals® Sentinel to remote monitor and manage the suspected subjects.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
DIAGNOSTIC
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Biovitals
Continuous physiological monitoring using Biovitals platform including (1) armband with multiple physiological sensor, (2) remote monitoring, and (3) Analytic platform. The arm will be worn 23 hours a day and off for 1 hour during showering for recharging battery during 24 hr quarantine period
BIOVITALS
Biovitals platform including (1) armband with multiple physiological sensor, (2) remote monitoring, and (3) Analytic platform. The arm will be worn 23 hours a day and off for 1 hour during showering for recharging battery during 24 hr quarantine period
Control
Usual standard care
No interventions assigned to this group
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
BIOVITALS
Biovitals platform including (1) armband with multiple physiological sensor, (2) remote monitoring, and (3) Analytic platform. The arm will be worn 23 hours a day and off for 1 hour during showering for recharging battery during 24 hr quarantine period
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Quarantined as suspected COVID-19
* Asymptomatic upon enrolment
* All subjects give written informed consent
Exclusion Criteria
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
The University of Hong Kong
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Ivan FN Hung MD
Professor
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
David Siu, MD FRCP
Role: PRINCIPAL_INVESTIGATOR
HKU
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
The University of Hong Kong, Queen Mary Hospital
Hong Kong, , Hong Kong
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
COVID19_Biovitals_Protocol_1
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.