Overcoming Obstacles in Epigenetic Analysis of Human Twins
NCT ID: NCT04279704
Last Updated: 2020-10-28
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
80 participants
OBSERVATIONAL
2016-09-30
2020-03-01
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Investigators now need to determine the phenotypic consequences of interindividual variation in DNA methylation at human MEs. Studies in inbred mice have been instrumental in showing that there are non-genetic influences on the establishment of methylation at MEs. Twin studies, typically using saliva or peripheral blood cells (PBCs), have been used to assess whether individual epigenetic variation in humans is influenced by non-genetic factors. Indeed, in translating epigenetic findings from mice to humans, monozygotic (MZ; genetically-identical) twins are commonly viewed as the human equivalent of isogenic mice. However, there is an important difference between MZ twins and isogenic mice. Whereas each inbred mouse littermate has its own placenta, about 75% of MZ twins share a single placenta (monochorionicity) and therefore have intermingled circulation during fetal development. It is therefore essential to determine whether the resulting "cross pollination" of hematopoietic stem cells (HSCs) results in peripheral blood (and salivary) DNA of two monochorionic MZ twins being more epigenetically similar than that of other somatic tissues. Accurately quantifying epigenetic effects of periconceptional nutrition in twin studies, and thereby providing future intervention targets to reduce CVD risk in offspring, will likely require analyses of DNA methylation in tissues other than saliva or peripheral blood cells.
Investigators need to examine whether Monozygotic:Dizygotic twin comparisons, without regard to placental sharing in utero (chorionicity), are a suitable model for future work which will characterize ME loci and establish their associations with phenotypic consequences. Infancy is the ideal time to examine the association between MEs and CVD factors, since it provides the earliest time for risk prediction and intervention. Therefore, for this study investigators plan to recruit 40 twins pairs under 4 months of age to identify more easily available tissues for epigenetic analyses than hair follicles (which has been previously used as an alternative to PBCs or saliva). The plucking of hair follicles from infants is too burdensome on participants to accrue the large samples intended for future analyses.
Summary: Studies in rats provide evidence that maternal nutrition around the time of conception can alter epigenetic mechanisms affecting obesity, and obesity itself is a strong CVD risk factor. This relationship is mediated by the early embryonic methylation at metastable alleles. Following the identification of over 100 MEs in humans many of which are associated with obesity or other CVD risk factors, investigators are now ready to implement studies to examine whether periconceptional nutrition influences CVD risk via methylation. Investigators seek to translate this work on MEs into human populations since it suggests an important CVD risk. Further, investigators want to establish the importance of chorionicity as a factor in epigenetic analyses of MZ twins, and to validate a new tissue for such studies.
Aim 1: Validate nail clippings as an acceptable DNA source for the study for human MEs Hypothesis 1: At MEs, DNA methylation in infant nail clippings (which can be easily collected) is highly correlated with that in hair follicles, urine and buccal swabs.
Aim 2: Compare epigenetic discordance at MEs in monochorionic vs. dichorionic MZ twins Hypothesis 2: At MEs, dichorionic MZ twin pairs (with separate placentae) will show greater epigenetic dissimilarity in PBCs than monochorionic MZ twin pairs (which share a placenta), but not in other tissues.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
CROSS_SECTIONAL
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
1 Month
6 Months
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
National Institutes of Health (NIH)
NIH
Baylor College of Medicine
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Alexis Wood
Assistant Professor
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Alexis C Wood, PhD
Role: PRINCIPAL_INVESTIGATOR
Baylor College of Medicine
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Alexis C Wood
Houston, Texas, United States
Countries
Review the countries where the study has at least one active or historical site.
Provided Documents
Download supplemental materials such as informed consent forms, study protocols, or participant manuals.
Document Type: Study Protocol and Statistical Analysis Plan
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
H 37359
Identifier Type: -
Identifier Source: org_study_id