Evaluation of the Heart's Respiratory Quotient as Predictive Value After Extra-hospital Cardiac Arrest
NCT ID: NCT04211207
Last Updated: 2023-11-29
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
40 participants
OBSERVATIONAL
2020-01-27
2023-09-22
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
CASE_ONLY
PROSPECTIVE
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
non invasive monitoring value
heart's respiratory quotient as non invasive monitoring value
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Admission to intensive care unit after a non-hospital cardiopulmonary arrest.
* Resumption of spontaneous cardiac activity.
* Non-opposition of the patient or his relatives
Exclusion Criteria
* Prior neurological impairment
* Persons deprived of their liberty by a judicial proceeding, or administrative decision.
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University Hospital, Grenoble
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Chu Grenoble Alpes
Grenoble, , France
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Luc G, Baert V, Escutnaire J, Genin M, Vilhelm C, Di Pompeo C, Khoury CE, Segal N, Wiel E, Adnet F, Tazarourte K, Gueugniaud PY, Hubert H; On behalf GR-ReAC. Epidemiology of out-of-hospital cardiac arrest: A French national incidence and mid-term survival rate study. Anaesth Crit Care Pain Med. 2019 Apr;38(2):131-135. doi: 10.1016/j.accpm.2018.04.006. Epub 2018 Apr 21.
Horburger D, Testori C, Sterz F, Herkner H, Krizanac D, Uray T, Schober A, Stockl M, Stratil P, Weiser C, Wallmuller C, Holzer M. Mild therapeutic hypothermia improves outcomes compared with normothermia in cardiac-arrest patients--a retrospective chart review. Crit Care Med. 2012 Aug;40(8):2315-9. doi: 10.1097/CCM.0b013e31825333cf.
Bhattacharjee S, Baidya DK, Maitra S. Therapeutic hypothermia after cardiac arrest is not associated with favorable neurological outcome: a meta-analysis. J Clin Anesth. 2016 Sep;33:225-32. doi: 10.1016/j.jclinane.2016.03.001. Epub 2016 May 5.
Adnet F, Triba MN, Borron SW, Lapostolle F, Hubert H, Gueugniaud PY, Escutnaire J, Guenin A, Hoogvorst A, Marbeuf-Gueye C, Reuter PG, Javaud N, Vicaut E, Chevret S. Cardiopulmonary resuscitation duration and survival in out-of-hospital cardiac arrest patients. Resuscitation. 2017 Feb;111:74-81. doi: 10.1016/j.resuscitation.2016.11.024. Epub 2016 Dec 14.
Lemiale V, Dumas F, Mongardon N, Giovanetti O, Charpentier J, Chiche JD, Carli P, Mira JP, Nolan J, Cariou A. Intensive care unit mortality after cardiac arrest: the relative contribution of shock and brain injury in a large cohort. Intensive Care Med. 2013 Nov;39(11):1972-80. doi: 10.1007/s00134-013-3043-4. Epub 2013 Aug 14.
Pekkarinen PT, Backlund M, Efendijev I, Raj R, Folger D, Litonius E, Laitio R, Bendel S, Hoppu S, Ala-Kokko T, Reinikainen M, Skrifvars MB. Association of extracerebral organ failure with 1-year survival and healthcare-associated costs after cardiac arrest: an observational database study. Crit Care. 2019 Feb 28;23(1):67. doi: 10.1186/s13054-019-2359-z.
Dell'Anna AM, Sandroni C, Lamanna I, Belloni I, Donadello K, Creteur J, Vincent JL, Taccone FS. Prognostic implications of blood lactate concentrations after cardiac arrest: a retrospective study. Ann Intensive Care. 2017 Oct 6;7(1):101. doi: 10.1186/s13613-017-0321-2.
Kliegel A, Losert H, Sterz F, Holzer M, Zeiner A, Havel C, Laggner AN. Serial lactate determinations for prediction of outcome after cardiac arrest. Medicine (Baltimore). 2004 Sep;83(5):274-279. doi: 10.1097/01.md.0000141098.46118.4c.
Riveiro DF, Oliveira VM, Braunner JS, Vieira SR. Evaluation of Serum Lactate, Central Venous Saturation, and Venous-Arterial Carbon Dioxide Difference in the Prediction of Mortality in Postcardiac Arrest Syndrome. J Intensive Care Med. 2016 Sep;31(8):544-52. doi: 10.1177/0885066615592865. Epub 2015 Jun 24.
Cocchi MN, Miller J, Hunziker S, Carney E, Salciccioli J, Farris S, Joyce N, Zimetbaum P, Howell MD, Donnino MW. The association of lactate and vasopressor need for mortality prediction in survivors of cardiac arrest. Minerva Anestesiol. 2011 Nov;77(11):1063-71. Epub 2011 May 11.
Walley KR. Use of central venous oxygen saturation to guide therapy. Am J Respir Crit Care Med. 2011 Sep 1;184(5):514-20. doi: 10.1164/rccm.201010-1584CI.
Rivers EP, Rady MY, Martin GB, Fenn NM, Smithline HA, Alexander ME, Nowak RM. Venous hyperoxia after cardiac arrest. Characterization of a defect in systemic oxygen utilization. Chest. 1992 Dec;102(6):1787-93. doi: 10.1378/chest.102.6.1787.
Gaieski DF, Band RA, Abella BS, Neumar RW, Fuchs BD, Kolansky DM, Merchant RM, Carr BG, Becker LB, Maguire C, Klair A, Hylton J, Goyal M. Early goal-directed hemodynamic optimization combined with therapeutic hypothermia in comatose survivors of out-of-hospital cardiac arrest. Resuscitation. 2009 Apr;80(4):418-24. doi: 10.1016/j.resuscitation.2008.12.015. Epub 2009 Feb 12.
Walters EL, Morawski K, Dorotta I, Ramsingh D, Lumen K, Bland D, Clem K, Nguyen HB. Implementation of a post-cardiac arrest care bundle including therapeutic hypothermia and hemodynamic optimization in comatose patients with return of spontaneous circulation after out-of-hospital cardiac arrest: a feasibility study. Shock. 2011 Apr;35(4):360-6. doi: 10.1097/SHK.0b013e318204c106.
Mallat J, Lemyze M, Tronchon L, Vallet B, Thevenin D. Use of venous-to-arterial carbon dioxide tension difference to guide resuscitation therapy in septic shock. World J Crit Care Med. 2016 Feb 4;5(1):47-56. doi: 10.5492/wjccm.v5.i1.47. eCollection 2016 Feb 4.
Solberg G, Robstad B, Skjonsberg OH, Borchsenius F. Respiratory gas exchange indices for estimating the anaerobic threshold. J Sports Sci Med. 2005 Mar 1;4(1):29-36. eCollection 2005 Mar 1.
Mekontso-Dessap A, Castelain V, Anguel N, Bahloul M, Schauvliege F, Richard C, Teboul JL. Combination of venoarterial PCO2 difference with arteriovenous O2 content difference to detect anaerobic metabolism in patients. Intensive Care Med. 2002 Mar;28(3):272-7. doi: 10.1007/s00134-002-1215-8. Epub 2002 Feb 8.
Mukai A, Suehiro K, Kimura A, Funai Y, Matsuura T, Tanaka K, Yamada T, Mori T, Nishikawa K. Comparison of the venous-arterial CO2 to arterial-venous O2 content difference ratio with the venous-arterial CO2 gradient for the predictability of adverse outcomes after cardiac surgery. J Clin Monit Comput. 2020 Feb;34(1):41-53. doi: 10.1007/s10877-019-00286-z. Epub 2019 Feb 22.
Piot J, Hebrard A, Durand M, Payen JF, Albaladejo P. An elevated respiratory quotient predicts complications after cardiac surgery under extracorporeal circulation: an observational pilot study. J Clin Monit Comput. 2019 Feb;33(1):145-153. doi: 10.1007/s10877-018-0137-0. Epub 2018 Apr 17.
Shinozaki K, Becker LB, Saeki K, Kim J, Yin T, Da T, Lampe JW. Dissociated Oxygen Consumption and Carbon Dioxide Production in the Post-Cardiac Arrest Rat: A Novel Metabolic Phenotype. J Am Heart Assoc. 2018 Jun 29;7(13):e007721. doi: 10.1161/JAHA.117.007721.
Uber A, Grossestreuer AV, Ross CE, Patel PV, Trehan A, Donnino MW, Berg KM. Preliminary observations in systemic oxygen consumption during targeted temperature management after cardiac arrest. Resuscitation. 2018 Jun;127:89-94. doi: 10.1016/j.resuscitation.2018.04.001. Epub 2018 Apr 4.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
2019-A02548-49
Identifier Type: OTHER
Identifier Source: secondary_id
38RC19.296
Identifier Type: -
Identifier Source: org_study_id