Treatment of Patients With Atherosclerotic Disease With Paclitaxel-associated to LDL Like Nanoparticles

NCT ID: NCT04148833

Last Updated: 2020-10-27

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

UNKNOWN

Clinical Phase

PHASE2/PHASE3

Total Enrollment

40 participants

Study Classification

INTERVENTIONAL

Study Start Date

2019-06-23

Study Completion Date

2021-08-23

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The investigators propose a prospective, randomized, double-blind, placebo-controlled study. The purpose of the study is to evaluate the safety and efficacy of an anti-proliferative agent paclitaxel in a cholesterol-rich non-protein nanoparticle (Paclitaxel -LDE) in patients with stable coronary disease.

Patients with multi-vessels stable coronary disease will be randomized to receive Paclitaxel-LDE IV or placebo-LDE IV each 21 days for 6 weeks. The primary and main secondary endpoints will be analyzed by coronary and aortic CTA, that will be performed 1-4 weeks after randomization and at 3-8 weeks after the last treatment cycle.

Patients will undergo clinical and laboratory safety evaluations before each treatment cycle and 3-8 weeks after the last cycle. An algorithm for drug suspension based on clinical and laboratory finding will be followed.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Atherosclerosis is a life-threatening condition, as long as cardiovascular disease is responsible for 31% of all global mortality.

Inflammation is extremely important in atherosclerosis pathophysiology. The use of inflammatory biomarkers to predict risk, monitor treatments and guide therapy, has shown substantial potential for clinical applicability. Many studies in primary and secondary prevention of cardiovascular disease showed that individuals with lower high sensitive C-reactive protein (hsCRP) have better clinical outcomes than those with higher levels. The potential benefit of anti-inflammatory therapy in atherosclerosis has been previously demonstrated in studies in patients with chronic inflammatory diseases, such as rheumatoid arthritis (AR); in systemic lupus erythematosus; in psoriasis and inflammatory bowel disease, in this patients the spread of the inflammatory cascade results in premature atherosclerotic plaque formation. Cardiovascular mortality is the cause of death in 40-50% of AR patients. The treatment of systemic diseases with TNF-a inhibitors has been associated with a reduction in cardiovascular events in patients with AR and psoriasis.

In this setting, the use of non-invasive treatments to reduce lesion size and inflammation is essential for the prevention of sub-sequent cardiovascular events.

The most potent anti-proliferative drugs currently available are chemotherapeutic agents used for cancer treatment. However, the systemic use of these drugs at high doses for the treatment of atherosclerotic cardiovascular diseases is unlikely due to their significant, often life-threatening toxicity. Nonetheless, the toxicity of such agents can be strongly diminished by the use of optimized drug-delivery systems. In a pioneer study performed on patients with acute leukemia, Maranhão et al. reported the potential of a cholesterol-rich non-protein nanoparticle (LDE) as a drug targeting agent. LDE particles have lipid compositions and structures that resemble low-density lipoprotein (LDL) and can be injected directly into the bloodstream. When LDE particles come into contact with plasma, the particles acquire exchangeable apolipoproteins from native lipoproteins, such as apolipoprotein (apo) E, which binds the particles to LDL receptors. In neoplastic cells, lipoprotein receptors are overexpressed, such that uptake of native LDL and of LDE particles is increased relative to that in normal tissues. In aortas of cholesterol-fed rabbits the uptake of LDE particles is increased in comparison to normal aortas and in rabbit-grafted hearts take up the nanoemulsion at amounts fourfold greater than native hearts.

LDE-paclitaxel treatment of rabbits induced to exhibit atherosclerosis via high cholesterol intake resulted in a 65% reduction in lesion size. In rabbits that underwent heterotopic heart transplantation, LDE-paclitaxel treatment markedly reduced heart graft damage by preventing coronary vessel destruction and macrophage invasion into the myocardium.

In a pilot study Maranhão et al showed that treatment with high-dose LDE-paclitaxel had low enough toxicity to permits the use in patients with cardiovascular disease, and an average 18% reduction in aortic plaque volume in four out of the eight participants, which is a promising finding. This result was especially noteworthy in view of the short 18-week treatment period and when considering that plaque reduction did not occur in any of the control group patients. In contrast, statistically significant disease progression was observed in the non-treated control patients.

The aim of this study is to investigate whether patients with aortic and coronary atherosclerotic disease showed good tolerability to LDE-paclitaxel treatment and whether this formulation could achieve reduction in plaque volume and characteristics by coronary and aortic CT angiography.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Coronary Artery Disease Atherosclerosis Inflammation

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Primary Study Purpose

TREATMENT

Blinding Strategy

QUADRUPLE

Participants Caregivers Investigators Outcome Assessors

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

LDE-Paclitaxel

Paclitaxel carried by a lipid nanoparticle (LDE-Paclitaxel)

Group Type EXPERIMENTAL

LDE-Paclitaxel

Intervention Type DRUG

LDE-Paclitaxel at the dose of 175 mg/m2 IV each 21 days for 6 weeks

LDE-Placebo

Lipid nanoparticle (LDE)

Group Type PLACEBO_COMPARATOR

LDE-Placebo

Intervention Type DRUG

LDE-Placebo at the dose of 175 mg/m2 IV each 21 days for 6 weeks

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

LDE-Paclitaxel

LDE-Paclitaxel at the dose of 175 mg/m2 IV each 21 days for 6 weeks

Intervention Type DRUG

LDE-Placebo

LDE-Placebo at the dose of 175 mg/m2 IV each 21 days for 6 weeks

Intervention Type DRUG

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Multi-vessels coronary artery disease diagnosis by coronary CTA scan or invasive angiography
* Aortic atherosclerosis diagnosis by multidetector computed tomography (MDCT) angiography.
* Signing the study informed consent.

Exclusion Criteria

* History of AMI in the last 30 days
* Heart failure with ejection fraction \<40%
* Estimated glomerular filtration rate \< 40 mL/min/1.73 m2.
* Prior history of chronic infectious disease, including tuberculosis, severe fungal disease, or known HIV positive.
* Chronic hepatitis B or C infection.
* Prior history of nonbasal cell malignancy or myeloproliferative or lymphoproliferative disease within the past 5 years.
* White blood cell count \<4000/mm3, hematocrit \<32%, or platelet count \<75000/mm3.
* Alanine aminotransferase levels (ALT) greater than 3-fold the upper limit of normal.
* History of actual alcohol abuse or unwillingness to limit alcohol consumption to \< 4 drinks per week.
* Pregnancy or breastfeeding.
* Women of child bearing potential, even if currently using contraception.
* Men who plan to father children during the study period or who are unwilling to use contraception.
* Chronic use of oral steroid therapy or other immunosuppressive or biologic response modifiers.
* Known chronic pericardial effusion, pleural effusion, or ascites.
* Angina pectoris CCS III-IV
* New York Heart Association class III-IV congestive heart failure.
* Contraindication for the use of iodinated contrast
* Life expectancy of \< 1 years.
* Acute or Chronic aortic dissection
Minimum Eligible Age

18 Years

Maximum Eligible Age

80 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

University of Sao Paulo General Hospital

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Raul Cavalcante Maranhão

Head Professor of Clinical Biochemistry, Faculty of Pharmaceutical Sciences; Director, Lipid Metabolism Laboratory, Heart Institute of the Medical School, University of São Paulo, São Paulo, Brazil. MD, PHD

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Raul C Maranhão, MD;PhD

Role: STUDY_CHAIR

Director Lipid Metabolism Laboratory, Heart Institute

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Heart Institute (InCor) - University of São Paulo Medical School, São Paulo, Brazil

São Paulo, São Paulo, Brazil

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Brazil

References

Explore related publications, articles, or registry entries linked to this study.

Shapiro MD, Fazio S. From Lipids to Inflammation: New Approaches to Reducing Atherosclerotic Risk. Circ Res. 2016 Feb 19;118(4):732-49. doi: 10.1161/CIRCRESAHA.115.306471.

Reference Type BACKGROUND
PMID: 26892970 (View on PubMed)

van Diepen JA, Berbee JF, Havekes LM, Rensen PC. Interactions between inflammation and lipid metabolism: relevance for efficacy of anti-inflammatory drugs in the treatment of atherosclerosis. Atherosclerosis. 2013 Jun;228(2):306-15. doi: 10.1016/j.atherosclerosis.2013.02.028. Epub 2013 Mar 1.

Reference Type BACKGROUND
PMID: 23518178 (View on PubMed)

Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM Jr, Kastelein JJ, Koenig W, Libby P, Lorenzatti AJ, MacFadyen JG, Nordestgaard BG, Shepherd J, Willerson JT, Glynn RJ; JUPITER Study Group. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008 Nov 20;359(21):2195-207. doi: 10.1056/NEJMoa0807646. Epub 2008 Nov 9.

Reference Type BACKGROUND
PMID: 18997196 (View on PubMed)

Ridker PM. Residual inflammatory risk: addressing the obverse side of the atherosclerosis prevention coin. Eur Heart J. 2016 Jun 7;37(22):1720-2. doi: 10.1093/eurheartj/ehw024. Epub 2016 Feb 22. No abstract available.

Reference Type BACKGROUND
PMID: 26908943 (View on PubMed)

Khan R, Spagnoli V, Tardif JC, L'Allier PL. Novel anti-inflammatory therapies for the treatment of atherosclerosis. Atherosclerosis. 2015 Jun;240(2):497-509. doi: 10.1016/j.atherosclerosis.2015.04.783. Epub 2015 Apr 18.

Reference Type BACKGROUND
PMID: 25917947 (View on PubMed)

Prodanovich S, Ma F, Taylor JR, Pezon C, Fasihi T, Kirsner RS. Methotrexate reduces incidence of vascular diseases in veterans with psoriasis or rheumatoid arthritis. J Am Acad Dermatol. 2005 Feb;52(2):262-7. doi: 10.1016/j.jaad.2004.06.017.

Reference Type BACKGROUND
PMID: 15692471 (View on PubMed)

Barnabe C, Martin BJ, Ghali WA. Systematic review and meta-analysis: anti-tumor necrosis factor alpha therapy and cardiovascular events in rheumatoid arthritis. Arthritis Care Res (Hoboken). 2011 Apr;63(4):522-9. doi: 10.1002/acr.20371.

Reference Type BACKGROUND
PMID: 20957658 (View on PubMed)

Vaidya K, Arnott C, Martinez GJ, Ng B, McCormack S, Sullivan DR, Celermajer DS, Patel S. Colchicine Therapy and Plaque Stabilization in Patients With Acute Coronary Syndrome: A CT Coronary Angiography Study. JACC Cardiovasc Imaging. 2018 Feb;11(2 Pt 2):305-316. doi: 10.1016/j.jcmg.2017.08.013. Epub 2017 Oct 18.

Reference Type BACKGROUND
PMID: 29055633 (View on PubMed)

Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, Kastelein JJP, Cornel JH, Pais P, Pella D, Genest J, Cifkova R, Lorenzatti A, Forster T, Kobalava Z, Vida-Simiti L, Flather M, Shimokawa H, Ogawa H, Dellborg M, Rossi PRF, Troquay RPT, Libby P, Glynn RJ; CANTOS Trial Group. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med. 2017 Sep 21;377(12):1119-1131. doi: 10.1056/NEJMoa1707914. Epub 2017 Aug 27.

Reference Type BACKGROUND
PMID: 28845751 (View on PubMed)

Dias ML, Carvalho JP, Rodrigues DG, Graziani SR, Maranhao RC. Pharmacokinetics and tumor uptake of a derivatized form of paclitaxel associated to a cholesterol-rich nanoemulsion (LDE) in patients with gynecologic cancers. Cancer Chemother Pharmacol. 2007 Jan;59(1):105-11. doi: 10.1007/s00280-006-0252-3. Epub 2006 May 13.

Reference Type BACKGROUND
PMID: 16699792 (View on PubMed)

Solomon DH, Karlson EW, Rimm EB, Cannuscio CC, Mandl LA, Manson JE, Stampfer MJ, Curhan GC. Cardiovascular morbidity and mortality in women diagnosed with rheumatoid arthritis. Circulation. 2003 Mar 11;107(9):1303-7. doi: 10.1161/01.cir.0000054612.26458.b2.

Reference Type RESULT
PMID: 12628952 (View on PubMed)

Maranhao RC, Vital CG, Tavoni TM, Graziani SR. Clinical experience with drug delivery systems as tools to decrease the toxicity of anticancer chemotherapeutic agents. Expert Opin Drug Deliv. 2017 Oct;14(10):1217-1226. doi: 10.1080/17425247.2017.1276560. Epub 2017 Jan 1.

Reference Type RESULT
PMID: 28042707 (View on PubMed)

Maranhao RC, Tavares ER, Padoveze AF, Valduga CJ, Rodrigues DG, Pereira MD. Paclitaxel associated with cholesterol-rich nanoemulsions promotes atherosclerosis regression in the rabbit. Atherosclerosis. 2008 Apr;197(2):959-66. doi: 10.1016/j.atherosclerosis.2007.12.051. Epub 2008 Mar 4.

Reference Type RESULT
PMID: 18289548 (View on PubMed)

Shiozaki AA, Senra T, Morikawa AT, Deus DF, Paladino-Filho AT, Pinto IM, Maranhao RC. Treatment of patients with aortic atherosclerotic disease with paclitaxel-associated lipid nanoparticles. Clinics (Sao Paulo). 2016 Aug;71(8):435-9. doi: 10.6061/clinics/2016(08)05.

Reference Type RESULT
PMID: 27626473 (View on PubMed)

Maranhao RC, Garicochea B, Silva EL, Llacer PD, Pileggi FJ, Chamone DA. Increased plasma removal of microemulsions resembling the lipid phase of low-density lipoproteins (LDL) in patients with acute myeloid leukemia: a possible new strategy for the treatment of the disease. Braz J Med Biol Res. 1992;25(10):1003-7.

Reference Type RESULT
PMID: 1342820 (View on PubMed)

Lourenco-Filho DD, Maranhao RC, Mendez-Contreras CA, Tavares ER, Freitas FR, Stolf NA. An artificial nanoemulsion carrying paclitaxel decreases the transplant heart vascular disease: a study in a rabbit graft model. J Thorac Cardiovasc Surg. 2011 Jun;141(6):1522-8. doi: 10.1016/j.jtcvs.2010.08.032. Epub 2011 Mar 31.

Reference Type RESULT
PMID: 21458008 (View on PubMed)

Marinho LL, Rached FH, Morikawa AT, Tavoni TM, Cardoso APT, Torres RVA, Assuncao AN Jr, Serrano CV Jr, Nomura CH, Maranhao RC. Safety and possible anti-inflammatory effect of paclitaxel associated with LDL-like nanoparticles (LDE) in patients with chronic coronary artery disease: a double-blind, placebo-controlled pilot study. Front Cardiovasc Med. 2024 Feb 21;11:1342832. doi: 10.3389/fcvm.2024.1342832. eCollection 2024.

Reference Type DERIVED
PMID: 38450375 (View on PubMed)

Related Links

Access external resources that provide additional context or updates about the study.

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

02090118.7.0000.0068

Identifier Type: -

Identifier Source: org_study_id