Melatonin Effect in Combination With Neoadjuvant Chemotherapy to Clinical Response in Locally Advanced Oral Squamous Cell Carcinoma

NCT ID: NCT04137627

Last Updated: 2019-12-09

Study Results

Results available

Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.

View full results

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

PHASE3

Total Enrollment

50 participants

Study Classification

INTERVENTIONAL

Study Start Date

2017-07-04

Study Completion Date

2018-12-18

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Backgrounds

Squamous cell carcinoma of the oral cancer (OSCC) is the sixth most common malignancy. Surgery is the mainstay of treatment for oral cancers. In locally advanced and unresectable oral cancer, surgery presents challenges primarily because the head and neck region have many critical structures that can be damaged by tumor or treatment. Damage to the critical structures can result in significant structural, cosmetic and functional deficits that negatively impact quality of life.

Use of NC was found to achieve resectability in 39% of locally advanced unresectable oral cancers. Patil et al. reported response rate with the three drugs regimen (TPF) for NC was 32% and 27,37% for two drugs regimen (TP). The overall response rate in the TPF group was significantly higher than that in the PF group, both in the induction-chemotherapy phase and after locoregional therapy (33,3% vs 19,9%, p = 0,004). Chemoresistancy has become the challenge in OSCC treatment affecting tumor response to chemotherapy.

Hypoxic microenvironment found in OSCC is marked by the high expression of HIF-1α. CD44 and CD133 as a cancer stem cells marker in head and neck (HNSCC) and miR-210 known as hypoxamiR has been reported to contribute chemoresistancy. As hypoxia inarguably one of the main causes of chemoresistancy, it is agreeable to use melatonin as an antioxidant to reduce the hypoxic condition in tumor microenvironment. Melatonin, a potent endogenous antioxidant agent is proven to have an oncostatic effect, was given in expect to reduce the tumor hypoxic condition so that it would increase the tumor response on NC. Majority of the clinical study use oral melatonin given once daily in 20 mg dose as the minimal dose to yield anti-tumor effects.

The purpose of this study is to prove the effectiveness of melatonin to increase clinical response in locally advanced OSCC patients when treated with NC. The effect of melatonin in reducing tumor hypoxia will be seen through its effect in decreasing the gene expressions of HIF-1α, miR-210, CD44, and CD133.

Methods

Study Design

This study is a double blind, randomized clinical trial using placebo as comparison running from June 2017 to July 2018 . Locally advanced OSSC (stage IVA and IVB) patients that will receive NC were included in the study. Fifty patients treated at two centres (RSCM and RSKD) were randomly allocated into two arms. Twenty-five patients received melatonin combined with three regiment NC (Taxane, Cisplatin, and 5-FU) and the other received placebo with NC. However only 25 out of 50 patients had completed the study protocol (13 patients in melatonin arm and 12 in placebo arm)

Evaluation of Clinical Response

The clinical response were assessed by evaluating pre-treatment and post treatment MRI with the aid of RECIST 1.1. First, it is necessary to estimate the overall tumor burden at baseline (target and non-target lesion) and use this as a comparator for subsequent measurement. The tumor response then being determined according to the definition criteria according to RECIST 1.1, as follows: Complete response (CR) is the disappearance of all target lesions. Partial response (PR) means there is at least 30% decrement in the sum of diameters of target lesions, taking as reference the baseline sum diameters. Progressive disease (PD) means there is at least a 20% increment in the sum of diameters of target lesions or an absolute increment of at least 5 mm. Stable disease (SD) is when there is neither a sufficient shrinkage nor sufficient increment of target lesion. Patients who categorized as PR and CR undergone surgery while those with SD and PD undergone core biopsy.

Genes expression examination

The primer for HIF-1α miR210, CD44, and CD133 genes amplification was design using a Primer Quest Tool IDT software. The total sequence of each gene attained from GenBank data source: National Centre for Biotechnology Information (NCBI). The steps of gene expression examination are RNA isolation, cDNA synthesis, and absolute quantification qPCR. qPCR result was analyzed based on the gene expression concentration compare to the pre-determined standard curve (positive control) of each genes.

Statistical analysis

The data was analysed with statistics software SPSS 20. Saphiro Wilk was used to test data normal distribution. Data with normal distribution and with p \> 0,05 presented in mean +- standard deviation (SD). Data with abnormal data distribution presented in median (minimal and maximal value). The statistical difference of gene concentration level (numerical data) between melatonin and placebo was analysed using normality test of Saphiro Wilk. Data with normal distribution was tested using unpaired-T test, while data with abnormal distribution was tested using Mann Whitney. Statistically significant different stated as p \< 0,05.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Oral Squamous Cell Carcinoma Neoadjuvant Chemotherapy

Keywords

Explore important study keywords that can help with search, categorization, and topic discovery.

Melatonin Locally Advanced Oral Squamous Cell Carcinoma Neoadjuvant Chemotherapy

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

one group receive standard treatment with melatonin, while the other group receive standard treatment with placebo
Primary Study Purpose

SUPPORTIVE_CARE

Blinding Strategy

QUADRUPLE

Participants Caregivers Investigators Outcome Assessors
double-blind masking

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Melatonin

The group received standard treatment with the oral administration of Melatonin

Group Type EXPERIMENTAL

Melatonin 20 MG Oral Capsule

Intervention Type DRUG

The administration of Melatonin 20 mg in addition to neoadjuvant chemotherapy to observe the antioxidant and onco-static effect.

Placebo

The group received standard treatment with the oral administration of Placebo

Group Type PLACEBO_COMPARATOR

Placebo oral capsule

Intervention Type DRUG

The administration of placebo capsule in addition to neoadjuvant chemotherapy

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Melatonin 20 MG Oral Capsule

The administration of Melatonin 20 mg in addition to neoadjuvant chemotherapy to observe the antioxidant and onco-static effect.

Intervention Type DRUG

Placebo oral capsule

The administration of placebo capsule in addition to neoadjuvant chemotherapy

Intervention Type DRUG

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

1. Patients with locally advanced oral squamous cell carcinoma
2. Patients with locally advanced oral squamous cell carcinoma who are planned with neoadjuvant chemotherapy
3. Patients with locally advanced oral squamous cell carcinoma who are planned with neoadjuvant chemotherapy who have not received any definitive treatment modalities, including surgical resection and chemoradiation therapy before the study conducted
4. Patients who are willing to sign the informed consent form to be our subject participants
5. Karnofky \>50

Exclusion Criteria

1. Patients who are already treated with definitive therapy for locally advanced oral squamous cell carcinoma
2. Patients who are not eligible to be treated with chemotherapy
Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Indonesia University

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

dr. Diani Kartini,SpB(K)Onk

Lecturer, Staff of Oncology Division of Department of Surgery, Principal Investigator

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Diani Kartini, MD

Role: PRINCIPAL_INVESTIGATOR

Indonesia University

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Faculty of Medicine, Universitas Indonesia

Jakarta Pusat, DKI Jakarta, Indonesia

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Indonesia

References

Explore related publications, articles, or registry entries linked to this study.

Kartini D, Taher A, Panigoro SS, Setiabudy R, Jusman SW, Haryana SM, Abdullah M, Rustamadji P, Purwanto DJ, Sutandyo N, Suroyo I, Siregar BH, Maruli H, Sungkar S. Effect of melatonin supplementation in combination with neoadjuvant chemotherapy to miR-210 and CD44 expression and clinical response improvement in locally advanced oral squamous cell carcinoma: a randomized controlled trial. J Egypt Natl Canc Inst. 2020 Feb 28;32(1):12. doi: 10.1186/s43046-020-0021-0.

Reference Type DERIVED
PMID: 32372215 (View on PubMed)

Provided Documents

Download supplemental materials such as informed consent forms, study protocols, or participant manuals.

Document Type: Study Protocol

View Document

Document Type: Statistical Analysis Plan

View Document

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

MLTOSCC

Identifier Type: -

Identifier Source: org_study_id